Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 1 |
Tytuł artykułu

Comparing the physical quality of Polish Chernozems classified in various complexes of agricultural suitability

Warianty tytułu
Języki publikacji
The objective of this study was the estimation of water and air properties of Polish Chernozems developed from loess, classified in various complexes of agricultural suitability. Twelve Chernozems situated in various physical geographic mesoregions of Poland were selected for the study. Chernozems classified in the very good wheat complex were characterised by significantly lower soil density, but greater field water capacity (expressed in kg·kg-1 and m3·m-3), water capacity at permanent wilting point, and content of micropores with equivalent diameter <0.2 μm compared to Chernozems from good and deficient wheat complexes. Chernozems classified in the particular complexes of agricultural suitability did not differ significantly in terms of their maximum water capacity, retention of water usable for plants, hydraulic conductivity in the saturated zone, total porosity, content of macropores >20 μm, content of mesopores with equivalent diameter of 0.2-20 μm, relative field capacity, air permeability at the state of field water capacity, and the index of physical quality S according to Dexter. Based on the absolute values of the calculated index S the physical quality of all Chernozems under study was estimated as very good. Among the particular properties the most favourable were the following: soil density, total porosity, field water capacity, and retention of water usable for plants, whereas the air capacity and permeability at the state of field water capacity and the saturated hydraulic conductivity were most frequently estimated as good or medium.
Słowa kluczowe
Opis fizyczny
  • Institute of Soil Science, Environment Engineering and Management, University of Life Science in Lublin, S. Leszczynskiego 7, 20-069 Lublin, Poland
  • 1. MCKENZIE B.M., TISDALL J.M., VANCE W.H. Soil physical quality. In: Gliński J., Horabik J., Lipiec J. (Eds.) Encyclopedia of agrophysics. Springer, 770, 2011.
  • 2. KARLEN D.L., CAMBARDELLA C.A., KOVAR J.L., COLVIN T.S. Soil quality response to long-term tillage and crop rotation practices. Soil Till. Res. 133, 54, 2013.
  • 3. BASTIDA F., ZSOLNAY A., HERNANDEZ T., GARCIA C. Past, present and future of soil quality indices: a biological perspective. Geoderma, 147, 159, 2008.
  • 4. ZOBECK T.M., HALVORSON A.D., WIENHOLD B., ACOSTA-MARTINEZ V., KARLEN D.L. Comparison of two soil quality indexes to evaluate cropping systems in northern Colorado. J. Soil Water Conserv. 63, 329, 2008.
  • 5. ROMANIUK R., GIUFFRE L., COSTANTINI A., BARTOLONI N., NANNIPIERI P. A comparison of indexing methods to evaluate quality of soils: the role of soil microbiological properties. Soil Res. 49, 733, 2011.
  • 6. REYNOLDS W.D., DRURY C.F., YANG X.M., TAN C.S. Optimal soil physical quality inferred through structural regression and parameter interaction. Geoderma 146, 466, 2008.
  • 7. REYNOLDS W.D., DRURY C.F., TAN C.S., FOX C.A., YANG X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 152, 252, 2009.
  • 8. SHUKLA M.K., LAL R., EBINGER M. Determining soil quality indicators by factor analysis. Soil Till. Res., 87, 194, 2006.
  • 9. TAYLOR M.D., KIM N.D., HILL R.B., CHAPMAN R. A review of soil quality indicators and five key issues after 12 yr soil quality monitoring in the Waikato region. Soil Use Manag. 26, 212, 2010.
  • 10. LIPIEC J., WALCZAK R., WITKOWSKA-WALCZAK B., NOSALEWICZ A., SŁOWIŃSKA-JURKIEWICZ A., SŁAWIŃSKI C. The effect of aggregate size on water retention and pore structure of two silt loam soils of different genesis. Soil Till. Res. 97, 239, 2007.
  • 11. SŁAWIŃSKI C., WITKOWSKA-WALCZAK B., LIPIEC J., NOSALEWICZ A. Effect of aggregate size on water movement in soils. Int. Agrophys. 25, 53, 2011.
  • 12. HERNANDEZ-RAMIREZ G., LAWRENCE-SMITH E.J., SINTON S.M., TABLEY F., SCHWEN A., BEARE M.H., BROWN H.E. Root responses to alterations in macroporos-ity and penetrability in a silt loam soil. Soil Sci. Soc. Am. J. 78, 1392, 2014.
  • 13. BENGOUGH A.G., BRANSBY M.F., HANS J., MCK-ENNA S.J., ROBERTS T.J. Root responses to soil physical conditions: growth dynamics from field to cell. J. Experim. Bot. 57, 437, 2006.
  • 14. LIPIEC J. Influence of soil physical properties on the plant growth and yielding. In: Gliński J., Horabik J., Lipiec J., Sławiński C. (Eds.) Agrophysics - processes, properties, methods. Inst. Agrofizyki PAN, Lublin, 117, 2014 [In Polish].
  • 15. PALUSZEK J. Criteria of evaluation of soil physical quality of polish arable soils. Acta Agrophys., Rozpr. i Monogr. 191, 1, 2011 [In Polish].
  • 16. PRANAGAL J. The physical state of selected silty soils of on the Lublin Region. Rozpr. Nauk. Uniw. Przyr. w Lublinie 353, 1, 2011 [In Polish].
  • 17. DEXTER A.R. Soil physical quality. Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120, 201, 2004.
  • 18. DEXTER A.R., CZYŻ E.A. Application of S-teory in the study of soil physical degradation and its consequences. Land Degrad. Develop. 18, 369, 2007.
  • 19. WANG E., CRUSE R.M., ZHAO Y., CHEN X. Quantifying soil physical condition based on soil solid, liquid and gaseous phases. Soil Till. Res. 146, 4, 2015.
  • 20. ALTERMANN M., RINKLEBE J., MERBACH I., KÖRSCHENS M., LANGER U., HOFMANN B. Chernozem -soil of the year 2005. J. Plant Nutr. Soil Sci. 168, 725, 2005.
  • 21. POLISH SOCIETY OF SOIL SCIENCE. Polish soil classification. 5 Edition. Rocz. Glebozn. - Soil Sci. Ann. 62, (3), 1, 2011 [In Polish].
  • 22. KUZNETSOVA I.V. Changes in the physical status of the typical and leached Chernozems of Kursk Oblast within 40 years. Eurasian Soil Sci. 46 (4), 393, 2013.
  • 23. SKIBA S., KOŁODZIEJCZYK M. The genesis and taxonomy of Polish Chernozems in light of research at the Słonowice archaeological station. In: Abłamowicz D., Śnieszko Z. (Eds.) Changes in the geographic environment in the age of agriculture and animal science - research from Poland, Muzeum Śląskie, Katowice, 87, 2004 [In Polish].
  • 24. ECKMEIER E., GERLACH R., GEHRT E., SCHMIDT M.W.I. Pedogenesis of Chernozems in Central Europe - a review. Geoderma 139, 288, 2007.
  • 25. ŻYŁA M. Water and air properties of eroded loess soils of the Proszowice Plateau. Folia Geogr. Ser. Geogrphysica 40, 91, 2008.
  • 26. MAZUREK R., BEJGER R. The role of black locust (Robinia pseudoacacia L.) shelterbelts in the stabilization of carbon pools and humic substances in Chernozem. Pol. J. Environ. Stud. 23 (4), 1263, 2014.
  • 27. PALUSZEK J. Air-dry and water-stable soil aggregate distribution of Polish Chernozems classified in various complexes of agricultural suitability. Pol. J. Environ. Stud. 23 (3), 813, 2014.
  • 28. OFFICIAL TABLE OF SOIL CLASSES. Appendix to the Regulation of the Council of Ministers of 12th September, 2012, on the soil-science classification of soils. Dz. U. RP of 14th November, 2012, item 1246, 4, 2012 [In Polish].
  • 29. MOCEK A. (Ed.) Soil Science. Wyd. Nauk. PWN, Warszawa, 1, 2015 [In Polish].
  • 30. KONDRACKI J. Regional geography of Poland. 3 Edition. Wyd. Nauk. PWN, Warszawa, 1, 2011 [In Polish].
  • 31. PENNOCK D., YATES T., BRAIDEK J. Soil sampling designs. In: Carter M.R., Gregorich E.G. (Eds.) Soil sampling and methods of analysis. Second Edition, CRC Press, Boca Raton, FL, 1, 2008.
  • 32. POLISH SOCIETY OF SOIL SCIENCE. Particle size distribution and textural classes of soils and mineral materials - classification of Polish Society of Soil Science 2008. Soil Sci. Ann. 60 (2), 5, 2009 [In Polish].
  • 33. HAO X., BALL B.C., CULLEY J.L.B., CARTER M.R., PARKIN G.W. 2006. Soil density and porosity. In: Carter M.R., Gregorich E.G. (Eds.) Soil sampling and methods of analysis. Second Edition, CRC Press, Boca Raton, FL, 743, 2008.
  • 34. WITKOWSKA-WALCZAK B., WALCZAK R., SŁAWIŃSKI C. Determination of water potential-moisture characteristics of soil porous media. Inst. of Agrophysics PAS, Lublin, 1, 2004.
  • 35. IWANEK M. A method for measuring saturated hydraulic conductivity in anisotropic soils. Soil Sci. Soc. Am. J. 72, 1527, 2008.
  • 36. GHANBARIAN-ALAVIJEH B., LIAGHAT A., HUANG G.H., VAN GENUCHTEN M.T. Estimation of the van Genuchten soil water retention properties from soil textured data. Pedosphere 20 (4), 456, 2010.
  • 37. STATSOFT. Electronic manual of statistics PL. Kraków, WEB: 2006 [In Polish].
  • 38. KOLANO M., CAŁA M. Loess of Sandomierz region in light of geological-engineering research. Górnictwo i Geoinż. 35, 349, 2011 [In Polish].
  • 39. KOROLEV V.A. Specific features of water permeability in virgin and cultivated Chernozems. Eurasian Soil Sci. 40, (9), 962, 2007.
  • 40. MEDVEDEV V. V., PLISKO I.V., BIGUN O.N. Comparative characterization of the optimum and actual parameters of Ukrainian Chernozems. Eurasian Soil Sci. 47 (10), 1044, 2014.
  • 41. ASSOULINE S. Modelling the relationship between soil bulk density and the water retention curve. Vadose Zone J. 5, 554, 2006.
  • 42. BROGOWSKI Z., KWASOWSKI W., MADYNIAK R. Calculating particle density, bulk density, and total porosity of soil based on its texture. Soil Sci. Ann. 65 (4), 139, 2014.
  • 43. DREWRY J.J., CAMERON K.C., BUCHAN G.D. Pasture yield and soil physical property responses to soil compaction from treading and grazing - a review. Aust. J. Soil Res. 46, 237, 2008.
  • 44. LIPIEC J., KUŚ J., SŁOWIŃSKA-JURKIEWICZ A., NOSALEWICZ A. Soil porosity and water infiltration as influenced by tillage methods. Soil Till. Res. 89, 210, 2006.
  • 45. EYNARD A., SCHUMACHER T.E., LINDSTROM M.J., MALO D.D. Porosity and pore-size distribution in cultivated Ustolls and Usterts. Soil Sci. Soc. Am. J. 68, 1927, 2004.
  • 46. WALCZAK R.T., MORENO F., SŁAWIŃSKI C., FERNANDEZ E., ARRUE J.L. Modeling of soil retention curve using soil solid phase parameters. J. Hydrol. 329, 527, 2006.
  • 47. NEMES A., PACHEPSKY Y.A., TIMLIN D.J. Toward improving global estimates of field soil water capacity. Soil Sci. Soc. Am. J. 75, 807, 2011.
  • 48. BECKETT C.T.S., AUGARDE C.E. Prediction of soil water retention properties using pore-size distribution and porosity. Can. Geotech. J. 50, 435, 2013.
  • 49. VAN DER WEERDEN T.J., KELLIHER F.M., DE KLEIN C.A.M. Influence of pore size distribution and soil water content on nitrous oxide emissions. Soil Res. 50, 125, 2012.
  • 50. CHAPUIS R.P. Predicting the saturated hydraulic conductivity of soils: a review. Bull. Eng. Geol. Environ. 71, 401, 2012.
  • 51. RIENZNER M., GANDOLFI C. Investigation of spatial and temporal variability of saturated soil hydraulic conductivity at the field-scale. Soil Till. Res. 135, 28, 2014.
  • 52. CHAMINDU DEEPAGODA T.K.K., MOLDRUP P., SCHJONNING P., DE JONGE L.W., KAWAMOTO K., KOMATSU T. Density-corrected models for gas diffusivity and air permeability in unsaturated soil. Vadose Zone J. 10, 226, 2011.
  • 53. BRYK M., KOŁODZIEJ M. Assessment of water and air permeability of Chernozem supported by image analysis. Soil Till. Res. 138, 73, 2014.
  • 54. CHEN G., WEIL R.R., HILL R.L. Effects of compaction and cover crops on soil least limiting water range and air permeability. Soil Till. Res. 136, 61, 2014.
  • 55. HUANG M., RODGER H., BARBOUR S.L. An evaluation of air permeability measurements to characterize the saturated hydraulic conductivity of soil reclamation covers. Can. J. Soil Sci. 95, 15, 2015.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.