PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 18 | 2 |

Tytuł artykułu

Methyl jasmonate - a multifunctional molecule throughout the whole plant life

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Methyl jasmonate (MJ) is a widely occurring molecule. Since it is synthesized constitutively, its presence is substantial to plant normal growth and development. Moreover, its elevated concentration detected under abiotic and biotic stress conditions seems to be crucial to plant in reacting to adverse events and its ability to survive. Because of the sophisticated biochemical machinery inside the plant body, MJ, among other molecules, helps the plant to adopt to the surrounding environmental changes and is involved in its defense system.

Wydawca

-

Rocznik

Tom

18

Numer

2

Opis fizyczny

p.237-249,fig.,ref.

Twórcy

autor
  • Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
  • Department of Vegetable Crops and Medicinal Plants, Faculty of Horticulture and Landscape Architecture, University of Life Sciences, Akademicka 15, 20-950 Lublin, Poland

Bibliografia

  • Ahmad, P., Rasool, S., Gul, A., Sheikh, S.A., Akram, N.A., Ashraf, M., Kazi, A.M., Gucel, S. (2016). Jasmonates: multifunctional roles in stress tolerance. Front. Plant Sci., 7, 813. DOI: 10.3389/fpls.2016.00813
  • Akan, S., Tuna Gunes, N., Yanmaz, R. (2019). Methyl jasmonate and low temperature can help for keeping some physicochemical quality parameters in garlic (Allium sativum L.) cloves. Food Chem., 270, 546–553. DOI: 10.1016/j.foodchem.2018.07.085
  • Antico, C.J., Colon, C., Banks, T., Ramonell, K.M. (2012). Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front. Biol., 7(1), 48–56. DOI: 10.1007/s11515011-1171-1
  • Ávila-Juárez, L., Torres-Pacheco, I., Ocampo-Velázquez, R.V., Feregrino-Pérez, A.A., Cruz Hernández, A., Guevara-González, R.G. (2017). Integrating plant nutrients and elicitors for production of secondary metabolites, sustainable crop production and human health: a review. Int. J. Agric. Biol., 19(3), 391–402. DOI: 10.17957/IJAB/15.0297
  • Bastías, D.A., Martínez‐Ghersa, M.A., Newman, J.A., Card, S.D., Mace, W.J., Gundel, P.E. (2018). Jasmonic acid regulation of the anti‐herbivory mechanism conferred by fungal endophytes in grasses. J. Ecol., 106, 2365–2379. DOI: 10.1111/1365-2745.12990
  • Bayram, A., Tonğa, A. (2018). Methyl jasmonate affects population densities of phytophagous and entomophagous insects in wheat. Appl. Ecol. Env. Res., 16(1), 181–198. DOI: 10.15666/aeer/1601_181198
  • Bohnert, H.J., Nelson, D.E., Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell, 7, 1099– 1111. DOI: 10.1105/tpc.7.7.1099 Bruce, T.J.A., Pickett, J.A. (2011). Perception of plant volatile blends by herbivorous insects – finding the right mix. Phytochemistry, 72, 1605–1611. DOI: 10.1016/j.phytochem.2011.04.011
  • Brunissen, L., Vincent, C., Le Roux, V., Giordanengo, P. (2010). Effects of systemic potato response to wounding and jasmonate on the aphid Macrosiphum euphorbiae (Sternorryncha: Aphididae). J. Appl. Entomol., 134(7), 562–571. DOI: 10.1111/j.14390418.2009.01493.x
  • Butt, U.R., Naz, R., Nosheen, A., Yasmin, H., Keyani, R., Hussain, I., Hassan, M.N. (2019). Changes in pathogenesis-related gene expression in response to bioformulations in the apoplast of maize leaves against Fusarium oxysporum. J. Plant Interact., 14(1), 61–72. DOI: 10.1080/17429145.2018.1550217
  • Carvalho, R.F., Monteiro, C.C., Caetano, A.C., Dourado, M.N., Gratão, P.L., Haddad, C.R.B., Peres, L.E.P., Azevedo, R.A. (2013). Leaf senescence in tomato mutants as affected by irradiance and phytohormones. Biol. Plant., 57(4), 749–757. DOI: 10.1007/s10535-0130333-1
  • Chen, Y., Wang, Y., Huang, J., Zheng, C., Cai, C., Wang, Q., Wu, C.A. (2017). Salt and methyl jasmonate aggravate growth inhibition and senescence in Arabidopsis seedlings via the JA signaling pathway. Plant Sci., 261, 1–9. DOI: 10.1016/j.plantsci.2017.05.005
  • Chen, J., Yan, Z.Z., Li, X. (2014). Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotox. Environ. Safe., 104, 349–356. DOI: 10.1016/j.ecoenv.2014.01.022
  • Cheong, J.-J., Choi, Y.D. (2003). Methyl jasmonate as a vital substance in plants. Trends Genet., 19(7), 409– 413. DOI: 10.1016/S0168-9525(03)00138-0
  • Creelman, R.A., Mullet, J.E. (1997). Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, 355–381. DOI: 10.1146/annurev.arplant.48.1.355
  • Dai, J., Kong, X., Zhang, D., Li, W., Dong, H. (2017). Technologies and theoretical basis of light and simplified cotton cultivation in China. Field Crops Res., 214, 142–148. DOI: 10.1016/j.fcr.2017.09.005
  • Dar, T.A., Uddin, M., Khan, M.M.A., Hakeem, K.R., Jaleel, H. (2015). Jasmonates counter plant stress: a review. Environ. Exp. Bot., 115, 49–57. DOI: 10.1016/j.envexpbot.2015.02.010
  • Das, A., Lee, S.H., Hyun, T.K., Kim, S.W., Kim, J.Y. (2013). Plant volatiles as method of communication. Plant Biotechnol. Rep., 7(1), 9–26. DOI: 10.1007/s11816-012-0236-1
  • Dave, A., Hernández, M.L., He, Z., Andriotis, V.M.E., Vaistij, F.E., Larson, T.R., Graham, I.A. (2011). 12 oxo-phytodienoic acid accumulation during seed development represses germination in Arabidopsis. Plant Cell, 23, 583–599. DOI: 10.1105/tpc.110.081489
  • Donà, M., Macovei, A., Faè, M., Carbonera, D., Balestrazzi, A. (2013). Plant hormone signaling and modulation of DNA repair under stressful conditions. Plant Cell Rep., 32(7), 1043–1052. DOI: 10.1007/s00299-0131410-9
  • Faghih, S., Zarei, A., Ghobadi, C. (2019). Positive effects of plant growth regulators on physiology responses of Fragaria × ananassa cv. ‘Camarosa’ under salt stress. Int. J. Fruit Sci., 19(1), 104–114. DOI: 10.1080/15538362.2018.1462291
  • Fan, L., Shi, J., Zuo, J., Gao, L., Lv, J., Wang, Q. (2016). Methyl jasmonate delays postharvest ripening and senescence in the non-climacteric eggplant (Solanum melongena L.) fruit. Postharvest Biol. Technol., 120, 76–83. DOI: 10.1016/j.postharvbio.2016.05.010
  • FDA-EPA (2013). Methyl jasmonate; Exemption from the requirement of a tolerance. Document 78(74), FR 22789, pp. 22789‒22794. Available: federalregister.gov/documents/2013/04/17/2013-08829/methyljasmonate-exemption-from-the-requirement-of-atolerance
  • Fugate, K.K., Lafta, A.M., Eide, J.D., Li, G., Lulai, E.C., Olson, L.L., Deckard, E.L., Khan, M.F.R., Finger, F.L. (2018). Methyl jasmonate alleviates drought stress in young sugar beet (Beta vulgaris L.) plants. J. Agro. Crop Sci., 204, 566–576. DOI: 10.1111/jac.12286
  • Gai, Q.-Y., Jiao, J., Wang, X., Zang, Y.-P., Niu, L.-L., Fu, Y.-J. (2019). Elicitation of Isatis tinctoria L. hairy root cultures by salicylic acid and methyl jasmonate for the enhanced production of pharmacologically active alkaloids and flavonoids. PCTOC, 137, 77–86. DOI: 10.1007/s11240-018-01553-8
  • García-Pastor, M.E., Serrano, M., Guillén, F., Castillo, S., Martínez-Romero, D., Valero, D., Zapata, P.J. (2019). Methyl jasmonate effects on table grape ripening, vine yield, berry quality and bioactive compounds depend on applied concentration. Sci. Hortic., 247, 380–389. DOI: 10.1016/j.scienta.2018.12.043
  • Glowacz, M., Bill, M., Tinyane, P.P., Sivakumar, D. (2017). Maintaining postharvest quality of cold stored ‘Hass’ avocados by altering the fatty acids content and composition with the use of natural volatile compounds – methyl jasmonate and methyl salicylate. J. Sci. Food Agric., 97, 5186–5193. DOI: 0.1002/jsfa.8400
  • Goodrich-Tanrikulu, M., Mahoney, N.E., Rodriguez, S.B. (1995). The plant growth regulator methyl jasmonate inhibits aflatoxin production by Aspergillus flavus. Microbiology, 141, 2831–2837. DOI: 10.1099/13500872141-11-2831
  • Goyal, R.K., Fatima, T., Topuz, M., Bernadec, A., Sicher, R., Handa, A.K., Mattoo, A.K. (2016). Pathogenesisrelated protein 1b1 (PR1b1) is a major tomato fruit protein responsive to chilling temperature and upregulated in high polyamine transgenic genotypes. Front. Plant Sci., 7, 901. DOI: 10.3389/fpls.2016.00901
  • Han, Y., Chen, C., Yan, Z., Li, J., Wang, Y. (2019). The methyl jasmonate accelerates the strawberry fruits ripening process. Sci. Hortic., 249, 250–256. DOI: 10.1016/j.scienta.2019.01.061
  • Hanaka, A., Lechowski L., Mroczek-Zdyrska M., Strubińska J. (2018). Oxidative enzymes activity during abiotic and biotic stresses in Zea mays leaves and roots exposed to Cu, methyl jasmonate and Trigonotylus caelestialium. Physiol. Mol. Biol. Plants, 24(1), 1–5. DOI: 10.1007/s12298-017-0479-y
  • Hanaka, A., Maksymiec W., Bednarek, W. (2015). The effect of methyl jasmonate on selected physiological parameters of copper-treated Phaseolus coccineus plants. Plant Growth Regul., 77, 167–177. DOI: 10.1007/s10725-015-0048-8
  • Hanaka, A., Wójcik, M., Dresler, S., Mroczek-Zdyrska, M., Maksymiec, W. (2016). Does methyl jasmonate modify the oxidative stress response in Phaseolus coccineus treated with Cu? Ecotox. Environ. Saf., 124, 480–488. DOI: 10.1016/j.ecoenv.2015.11.024
  • Hassini, I., Martinez-Ballesta, M.C., Boughanmi, N., Diego A. Moreno, D.A., Carvajal, M. (2017). Improvement of broccoli sprouts (Brassica oleracea L. var. italica) growth and quality by KCl seed priming and methyl jasmonate under salinity stress. Sci. Hortic., 226, 141–151. DOI: 10.1016/j.scienta.2017.08.030
  • He, M.Y., Xu, Y., Cao, J.L., Zhu, Z.G., Jiao, Y.T., Wang, Y.J., Guan, X., Yang, Y.Z., Xu, W.R., Fu, Z.F. (2013). Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection. Protoplasma, 250, 129–140. DOI: 10.1007/s00709-012-0384-8
  • Hong, J.K., Hwang, B.K. (2002). Temporal and subcellular localization of PR-1 proteins in tomato stem tissues infected by virulent and avirulent isolates of Phytophthora capsici. Protoplasma, 219, 131–139. DOI: 10.1007/s007090200014
  • Horbowicz, M., Chrzanowski, G., Koczkodaj, D., Mitrus, J. (2011). The effect of methyl jasmonate vapors on content of phenolic compounds in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Soc. Bot. Pol., 80(1), 5‒9.
  • Howe, G.A. (2004) Jasmonates as signals in the wound response. J. Plant Growth Regul., 23, 223–237. DOI: 10.1007/s00344-004-0030-6
  • Ji, J-J., Feng, Q., Sun, H.-F., Zhang, X.-J., Li, X.-X., Li, J.K., Gao, J.-P. (2019). Response of bioactive metabolite and biosynthesis related genes to methyl jasmonate elicitation in Codonopsis pilosula. Molecules, 24, 533. DOI: 10.3390/molecules24030533
  • Ji, Y., Liu, J., Xing, D. (2016). Low concentrations of salicylic acid delay methyl jasmonate-induced leaf
  • senescence by up-regulating nitric oxide synthase activity. J. Exp. Bot., 67(17), 5233–5245. DOI: 10.1093/jxb/erw280
  • Kazan, K., Manners, J. (2011). The interplay between
  • light and jasmonate signalling during defense and development. J. Exp. Bot., 62, 4087–4100. DOI: 10.1093/jxb/err142
  • Koda, Y., Kikuta, Y. (2001). Effects of jasmonates on in vitro tuberization in several potato cultivars that differ greatly in maturity. Plant Prod. Sci., 4(1), 66–70.
  • Król, P., Igielski, R., Pollmann, S., Kępczyńska, E. (2015). Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f. sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation. J. Plant Physiol., 179, 122–132. DOI: 10.1016/j.jplph.2015.01.018
  • Liu, S., Qi, T.T., Ma, J.J., Ma, T., Ma, L., Lin, X. (2016). Ectopic expression of a SOC1 homolog from Phyllostachys violascens alters flowering time and identity of floral organs in Arabidopsis thaliana. Trees, 30, 2203–2215. DOI: 10.1007/s00468-016-1445-y
  • Lorbeth, R., Dammann, C., Ebneth, M., Amati, S., SanchezSerrano, J. (1992). Promoter elements involved in environmental and developmental control of potato proteinase inhibitor II expression. Plant J., 2, 477–486. DOI: 10.1046/j.1365-313X.1992.t01-21-00999.x
  • Lotan, T., Ori, N., Fluhr, R. (1989). Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell, 1, 881–887. DOI: 10.1105/tpc.1.9.881
  • Lundborg, L., Sampedro, L., Borg-Karlson, A.K., Zas, R. (2019). Effects of methyl jasmonate on the concentration of volatile terpenes in tissues of Maritime pine and Monterey pine and its relation to pine weevil feeding. Trees, 33(1), 53. DOI: 10.1007/s00468-018-1757-1
  • Maksymiec, W., Krupa Z. (2002). Jasmonic acid and heavy metals in Arabidopsis plants – a similar physiological response to both stressors? J. Plant Physiol., 159(5), 509–515. DOI: 10.1078/0176-1617-00610
  • Maksymiec, W., Krupa, Z. (2007). Effects of methyl jasmonate and excess copper on root and leaf growth. Biol. Plant., 51(2), 322‒326. DOI: 10.1007/s10535007-0062-4
  • Miyamoto, K., Oka, M., Uheda, E., Ueda, J. (2013). Changes in metabolism of cell wall polysaccharides in oat leaves during senescence: relevance to the senescence-promoting effect of methyl jasmonate. Acta Physiol. Plant., 35, 2675–2683. DOI: 10.1007/s11738013-1299-5
  • Misra, R.C., Sandeep, Kamthan, M., Kumar, S., Ghosh, S. (2016). A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. Sci. Rep., 6, 25340. DOI: 10.1038/srep25340
  • Mohamed, H.I., Latif, H.L. (2017). Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol. Mol. Biol. Plants, 23(3), 545–556. DOI: 10.1007/s12298-017-0451-x Munemasa, S., Mori, I.C., Yoshiyuki Murata Y. (2011). Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signal. Behav., 6(7), 939–941. DOI: 10.4161/psb.6.7.15439
  • Munns, R., Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651–681. DOI: 10.1146/annurev.arplant.59.032607.092911
  • Natella, F., Maldini, M., Nardini, M., Azzini, E., Foddai, M.S., Giusti, A.M., Baima, S., Morelli, G., Scaccini, C. (2016). Improvement of the nutraceutical quality of broccoli sprouts by elicitation. Food Chem., 201, 101– 109. DOI: 10.1016/j.foodchem.2016.01.063
  • Pareek, S., Benkeblia, N., Janick, J., Cao, S., Yahia, E.M. (2014). Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit. J. Sci. Food Agric., 94, 1495–1504. DOI: 10.1002/jsfa.6560
  • Peng, Q., Su, Y., Ling, H., Ahmad, W., Gao, S., Guo, J., Que, Y., Xu, L. (2017). A sugarcane pathogenesisrelated protein, ScPR10, plays a positive role in defense responses under Sporisorium scitamineum, SrMV, SA, and MeJA stresses. Plant Cell Rep., 36(9), 1427–1440. DOI: 10.1007/s00299-017-2166-4
  • Pluskota, W.E., Pupel, P., Głowacka, K., Okorska, S.B., Jerzmanowski, A., Nonogaki, H., Górecki, R.J. (2019). Jasmonic acid and ethylene are involved in the accumulation of osmotin in germinating tomato seeds. J. Plant Physiol., 232, 74–81. DOI: 10.1016/j.jplph.2018.11.014
  • Preston, C.A., Laue, G., Baldwin, I.T. (2004). Plant-plant signaling: application of trans-orcis-methyl jasmonate sequivalent to sage brush releases does not elicit direct defenses in native tobacco. J. Chem. Ecol., 30, 2193– 2214. DOI: 10.1023/B:JOEC.0000048783.64264.2a
  • Quintana-Rodriguez, E., Morales-Vargas, A.T., MolinaTorres, J., Adame-Alvarez, R.M., Jorge A. AcostaGallegos, J.A., Heil, M. (2015). Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J. Ecol., 103, 250–260. DOI: 10.1111/13652745.12340
  • Ramirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Goleniowski, M., Cusidó, R.M., Palazon, J. (2016). Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules, 21(2), 182. DOI: 10.3390/molecules21020182
  • Reyes-Díaz, M., Lobos, T., Cardemil, L., Nunes-Nesi, A., Retamales, J., Jaakola, L., Alberdi, M., RiberaFonseca, A. (2016). Methyl jasmonate: an alternative for improving the quality and health properties of fresh fruits. Molecules, 21(6), 567. DOI: 10.3390/molecules21060567
  • Saba, M.K., Zarei, L. (2019). Preharvest methyl jasmonate’s impact on postharvest chilling sensitivity, antioxidant activity, and pomegranate fruit quality. J. Food Biochem., e12763. DOI: 10.1111/jfbc.12763
  • Sadeghipour, O. (2017). Amelioration of salinity tolerance in cowpea plants by seed treatment with methyl jasmonate. Legume Research, 40(6), 1100–1106. DOI: 10.18805/lr.v0i0.8394. Saito, N., Nakamura, Y., Mori, I.C., Murata, Y. (2009). Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal. Behav., 4(2), 119–120. DOI: 10.4161/psb.4.2.7537
  • Santino, A., Taurino, M., De Domenico, S., Bonsegna, S., Poltronieri, P., Pastor, V., Flors, V. (2013). Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep., 32, 1085– 1098. DOI: 10.1007/s00299-013-1441-2
  • Scognamiglio, J., Jones, L., Letizia, C.S., Api, A.M. (2012). Fragrance material review on methyl jasmonate. Food Chem. Toxicol., 50, Suppl. 3, S572– S576. DOI: 10.1016/j.fct.2012.03.035
  • Scott, E.R., Li, X., Kfoury, N., Morimoto, J., Han, W.-Y., Ahmed, S., Cash, S.B., Griffin, T.S., Stepp, J.R., Robbat, A., Orians, C.M. (2019). Interactive effects of drought severity and simulated herbivory on tea (Camellia sinensis) volatile and non-volatile metabolites. Environ. Exp. Bot., 157, 283–292. DOI: 10.1016/j.envexpbot.2018.10.025
  • Selig, P., Keough, S., Nalam, V. J., Nachappa, P. (2016). Jasmonate-dependent plant defenses mediate soybean thrips and soybean aphid performance on soybean. Arthropod Plant Interact., 10(4), 273–282. DOI: 10.1007/s11829-016-9437-9
  • Sembdner, G., Parthier, B. (1993). The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44, 569– 589. DOI: 10.1146/annurev.pp.44.060193.003033
  • Senthil‐Nathan, S. (2019). Effect of methyl jasmonate (MeJA)‐induced defenses in rice against the rice leaffolder Cnaphalocrocis medinalis (Guenèe) (Lepidoptera: Pyralidae). Pest Manag. Sci., 75, 460–465. DOI: 10.1002/ps.5139
  • Serrano, M., Martínez-Esplá, A., Zapata P.J., Castillo, S., Martínez-Romero, D., Guillén, F., Valverde, J.M., Valero, D. (2018). Effects of methyl jasmonate treatment on fruit quality properties. In: Emerging Postharvest Treatment of Fruits and Vegetables, Barman, K., Sharma, S., Siddiqui, M.W. (eds.). Apple Academic Press, Oakville, Canada, 85–106.
  • Sheteiwy, M.S., Gong, D., Gao, Y., Pan, R., Hu, J., Guan, Y. (2018). Priming with methyl jasmonate alleviates polyethylene glycol-induced osmotic stress in rice seeds by regulating the seed metabolic profile. Environ. Exp. Bot., 153, 236–248. DOI: 10.1016/j.envexpbot.2018.06.001
  • Sohn, H.B., Lee, H.Y., Seo, J.S., Jung, C., Jeon, J.H., Kim, J.-H., Lee, Y.W., Lee, J.S., Cheong, J.-J., Choi, Y.D. (2011). Overexpression of jasmonic acid carboxyl methyltransferase increases tuber yield and size in transgenic potato. Plant Biotechnol. Rep., 5, 27–34. DOI: 10.1007/s11816-010-0153-0
  • Staswick, P.E. (2008). JAZing up jasmonate signaling. Trends Plant Sci., 13(2), 66–71. DOI: 10.1016/j.tplants.2007.11.011
  • Stella de Freitas, T.F., Stout, M.J., Sant’Ana, J. (2019). Effects of exogenous methyl jasmonate and salicylic acid on rice resistance to Oebalus pugnax. Pest Manag. Sci., 75, 744–752. DOI: 10.1002/ps.5174
  • Talebi, M., Moghaddam, M., Pirbalouti, A.G. (2018). Methyl jasmonate efects on volatile oil compounds and antioxidant activity of leaf extract of two basil cultivars under salinity stress. Acta Physiol. Plant., 40, 34. DOI: 10.1007/s11738-018-2611-1
  • Tavallali, V., Karimi, S. (2019). Methyl jasmonate enhances salt tolerance of almond rootstocks by regulating endogenous phytohormones, antioxidant activity and gasexchange. J. Plant Physiol., 234–235, 98–105. DOI: 10.1016/j.jplph.2019.02.001
  • Van Loon, L.C., Rep, M., Pieterse, C.M.J. (2006). Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol., 44, 135–162. DOI: 10.1146/annurev.phyto.44.070505.143425
  • Vick, B., Zimmerman, D. (1984). Biosynthesis of jasmonic acid by several plant species. Plant Physiol., 75, 458–461.
  • Wang, L., Guo, Z.H., Zhang, Y.B., Wang, Y.J., Yang, G., Yang, L., Wang, R.Y., Xie, Z.K. (2017). Isolation and characterization of two distinct Class II PR4 genes from the oriental lily hybrid Sorbonne. Russ. J. Plant Physiol. 64, 707. DOI: 10.1134/S1021443717050132
  • Wang, S.Y., Chen, C.T., Wang, C.Y., Chen, P. (2007). Resveratrol content in strawberry fruit is affected by preharvest conditions. J. Agric. Food Chem., 55, 8269‒8274. DOI: 10.1021/jf071749x
  • Wang, Y., Gao, L., Wang, Q., Zuo, J. (2019). Low temperature conditioning combined with methyl jasmonate can reduce chilling injury in bell pepper. Sci. Hortic., 243, 434‒439. DOI: 10.1016/j.scienta.2018.08.031
  • Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot., 100(4), 681‒97. DOI: 10.1093/aob/mcm079
  • Wasternack, C., Hause, B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot., 111(6), 1021‒58. DOI: 10.1093/aob/mct067
  • Wasternack, C., Strnad, M. (2016). Jasmonate signaling in plant stress responses and development – active and inactive compounds. N. Biotechnol., 33(5), 604–613. DOI: 10.1016/j.nbt.2015.11.001
  • Wilmowicz, E., Kućko, A., Frankowski, K., Świdziński, M., Marciniak, K., Kopcewicz, J. (2016). Methyl jasmonate-dependent senescence of cotyledons in Ipomoea nil. Acta Physiol. Plant., 38, 222. DOI: 10.1007/s11738-016-2244-1
  • Wu, W., Ding, C., Baerson, S.R., Lian, F., Lin, X., Zhang, L., Wu, C., Hwang, S.-H., Zeng, R., Song, Y. (2019). The roles of jasmonate signalling in nitrogen uptake and allocation in rice (Oryza sativa L.). Plant Cell Environ., 42, 659–672. DOI: 10.1111/pce.13451
  • Xiao, Y., Chen, Y., Charnikhova, T., Mulder, P.P.J., Heijmans, J., Hoogenboom, A., Agalou, A., Michel, C., Morel, J.-B., Dreni, L., Kater, M.M., Bouwmeester, H., Wang, M., Zhu, Z., Ouwerkerk, P.B.F. (2014). OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice. Plant Mol. Biol., 86, 19–33. DOI: 10.1007/s11103-014-0212-y
  • Xie, Q., Yan, F., Hu, Z., Wei, S., Lai, J., Chen, G. (2019). Accumulation of anthocyanin and its associated gene expression in purple tumorous stem mustard (Brassica juncea var. tumida Tsen et Lee) sprouts when exposed to light, dark, sugar, and methyl jasmonate. J. Agric. Food Chem., 67, 856−866. DOI: 10.1021/acs.jafc.8b04706
  • Xu, Q., Truong, T.T., Barrero, J.M., Jacobsen, J.V., Hocart, C.H., Gubler, F. (2016). A role for jasmonates in the release of dormancy by cold stratification in wheat. J. Exp. Bot., 67(11), 3497–3508. DOI: 10.1093/jxb/erw172
  • Yang, N., Guo, X., Wu, Y., Hu, X., Ma, Y., Zhang, Y., Wang, H., Tang, Z. (2018). The inhibited seed germination by ABA and MeJA is associated with the disturbance of reserve utilizations in Astragalus membranaceus. J. Plant Interact., 13(1), 388–397. DOI: 10.1080/17429145.2018.1483034
  • Yu, H., Khashaveh, A., Li, Y., Li, X., Zhang, Y. (2018). Field trapping of predaceous insects with synthetic herbivore-induced plant volatiles in cotton fields. Environ. Entomol., 47(1), 114–120. DOI: 10.1093/ee/nvx201
  • Zeng, X., Zhou, X., Zhang, W., Murofushi, N., Kitahara, T., Kamuro, Y. (1999). Opening of rice floret in rapid response to methyl jasmonate. J. Plant Growth Regul., 18(4), 153–158. DOI: 10.1007/PL00007063
  • Zhang, Y., Xie, Y., Xue, J., Peng, G., Wang, X. (2009). Effect of volatile emissions, especially α-pinene, from persimmon trees infested by Japanese wax scales or treated with methyl jasmonate on recruitment of ladybeetle predators. Environ. Entomol., 38(5), 1439–1445. DOI: 10.1603/022.038.0512

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-71e0b2e8-3365-45b2-9ad3-fdb3e716069c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.