PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 15 | 2 |

Tytuł artykułu

Response of phytophagous bats to patch quality and landscape attributes in fragmented tropical semi-deciduous forest

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Forest fragmentation reduces the amount of forest cover and negatively affects the habitat quality of forest remnants. Landscape attributes and habitat quality should therefore be evaluated together to improve our understanding of how fauna respond to fragmentation. We evaluated how patch quality (vegetation structure) and landscape characteristics influence the abundance of phytophagous bats in two contrasting types of landscape that differ in percent forest cover and matrix type: landscapes dominated by man-made pastures and landscapes with large tracts of continuous forest (tropical semi-deciduous forest). Bats were sampled in forest patches in both types of matrices, and for each matrix two sites with a cenote (water filled sink-holes, typical of the Yucatan) and two with no cenotes were sampled. Sites with cenotes offer better habitat quality than sites without cenotes: the richness and basal area of plants eaten (flower or fruit) by bats are higher in the forest vegetation surrounding them. At the landscape level, phytophagous bat abundance was negatively correlated with the amount of forest cover and proximity to other forest fragments, but positively correlated with forest edge density, patch density and landscape heterogeneity. At the patch level, bat abundance was positively correlated with plant richness and the basal area of edible tree species. In the Yucatan's agricultural landscapes the area and spatial distribution of forest remnants are not the only variables affecting bats. Habitat patch quality and high heterogeneity of land cover types are also important, and have a positive effect on phytophagous bat abundance and movement.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

2

Opis fizyczny

p.399-409,fig.,ref.

Twórcy

  • Red de Ecologia Funcional, Instituto de Ecologia, A.C., Carretera antigua a Coatepec No. 351, El Haya, C.P. 91070, Xalapa, Veracruz, Mexico
autor
  • Red de Ecologia Funcional, Instituto de Ecologia, A.C., Carretera antigua a Coatepec No. 351, El Haya, C.P. 91070, Xalapa, Veracruz, Mexico
  • Centro de Investigaciones Tropicales, Universidad Veracruzana, Casco de la ExHacienda Lucas Martin, Privada de Araucarias S/N, Col. Periodistas, C.P. 91019, Xalapa, Veracruz, Mexico
  • Instituto de Investigacion de Zonas Deserticas y Coordination de Ciencias Sociales y Humanidades, UASLP, Altair # 200 Col. Del Lianco, C.P. 78377, SLP, Mexico
  • Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan, Carretera a Xmatkuil Km 15.5, C.P. 97315, Merida, Yucatan, Mexico

Bibliografia

  • 1. L. D. Avila-Cabadilla , G. A. Sanchez-Azofeifa , K. E. Stoner , M. Y. Alvarez-Añorve , M. Quesada , and C. A. Portillo-Quintero . 2012. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forest. PLoS ONE, 7: e35228. Google Scholar
  • 2. J. C. Aznar , A. Dervieux , and P. Grillas . 2003. Association between aquatic vegetation and landscape indicators of human pressure. Wetlands, 23: 149–160. Google Scholar
  • 3. A. A. Castro-Luna , and J. Galindo-González . 2012. Enriching agroecosystems with fruit-producing tree species favors the abundance and richness of frugivorous and nectarivorous bats in Veracruz, Mexico. Mammalian Biology, 77: 32–40. Google Scholar
  • 4. A. A. Castro-Luna , V. J. Sosa , and G. Castillo-Campos . 2007. Bat diversity and abundance associated with the degree of secondary succession in a tropical forest mosaic in south-eastern Mexico. Animal Conservation, 10: 219–228. Google Scholar
  • 5. S. Dray , D. Chessel , and J. Thioulouse . 2003. Co-inertia analysis and the linking of ecological data tables. Ecology, 84:3078–3089. Google Scholar
  • 6. J. Ducfi-Gary 1988. La conformación territorial del Estado de Yucatán. Los componentes del medio físico. Universidad Autónoma Chapingo, México, 427 pp. Google Scholar
  • 7. J. B. Dunning , B. J. Danielson , and H. R. Pulliam . 1992. Ecological processes that affect populations in complex landscapes. Oikos, 65: 169–175. Google Scholar
  • 8. R. Durán-García , and G. García-Contreras . 2010. Distribución espacial de la vegetación. Pp. 131–135, in Biodiversidad y desarrollo humano en Yucatán ( R. Durán-García and M. Méndez-González , eds.). CICY, PPD-FMAM, CONABIO, Seduma, Mérida, México, 496 pp. Google Scholar
  • 9. ESR1 (Environmental Systems Research Institute, Inc.). 1996. ArcViewR 3.2. ESRI, Redlands, CA. Google Scholar
  • 10. A. Estrada , R. Coates-Estrada , and D. Meritt , Jr . 1993. Bat species richness and abundance in tropical rain forest fragments and in agricultural habitats at Los Tuxtlas, Mexico. Ecography, 16: 309–318. Google Scholar
  • 11. M. J. Evelyn , and D. A. Stiles . 2003. Roosting requirements of two frugivorous bats (Sturnira lilium and Artibeus lituratus) in fragmented Neotropical forest. Biotropica, 35: 405–418. Google Scholar
  • 12. T. H. Fleming , C. Geiselman , and W. J. Kress . 2009. The evolution of bat pollination: a phylogenetic perspective. Annals of Botany, 104: 1017–1043. Google Scholar
  • 13. J. S. Flores-Guido 2010. Vegetación de cenotes, rejolladas, haltunes y cavernas. Pp. 496, in Biodiversidad y desarrollo humano en Yucatán ( R. Durán-García and M. Méndez-González CICY, PPD-FMAM, CONABIO, Seduma, Mérida, México, 496 pp. Google Scholar
  • 14. J. G. Galindo-González 2004. Clasificación de los murciélagos de la región de Los Tuxtlas, Veracruz, respecto a su respuesta a la fragmentación del habitat. Acta Zoológica Mexicana, 20: 239–243. Google Scholar
  • 15. J. Galindo-González , and V. J. Sosa . 2003. Frugivorous bats in isolated trees and riparian vegetation associated with human-made pastures in a fragmented tropical landscape. Southwestern Naturalist, 48: 579–589. Google Scholar
  • 16. A. H. Gentry 1982. Patterns of Neotropical plant species diversity. Evolutionary Biology, 15: 1–85. Google Scholar
  • 17. P. C. I. Geomatics 2001. X-Pace reference manual, version 8.2. PCI Geomatics, Ontario, Canada, 316 pp. Google Scholar
  • 18. P. M. Gorresen , and M. R. Willig . 2004. Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay. Journal of Mammalogy, 85: 688–697. Google Scholar
  • 19. INEGI (Instituto Nacional de Estadística, Geografía e Informática). 2006. Anuario estadístico. Yucatán. Gobierno del Estado de Yucatán, INEGI, México. Available at http://www.inegi.org.mx/est/contenidos/espanol/sistemas/aee06/estatal/yuc/index.htm . Google Scholar
  • 20. B. T. Klingbeil , and M. R. Willig . 2009. Guild-specific responses of bats to landscape composition and configuration in fragmented Amazonian rainforest. Journal of Applied Ecology, 46: 203–213. Google Scholar
  • 21. A. P. Loayza , and B. A. Loiselle . 2009. Composition and distribution of a bat assemblage during the dry season in a naturally fragmented landscape in Bolivia. Journal of Mammalogy, 90: 732–742. Google Scholar
  • 22. T. A. Lobova , C. K. Geiselman , and S. A. Mori . 2009. Seed dispersal by bats in the Neotropics. Memoirs of the New York Botanical Garden, 101: 1–465. Google Scholar
  • 23. G. M. C. MacSwiney , P. Vilchis , F. Clarke , and P. A. Racey . 2007. The importance of cenotes in conserving bat assemblages in the Yucatan, Mexico. Biological Conservation, 136: 499–509. Google Scholar
  • 24. G, M. C. MacSwiney , B. Bolívar-Cimé , F. M. Clarke , and P. A. Racey . 2009. Insectivorous bat activity at cenotes in the Yucatán Peninsula, Mexico. Acta Chiropterologica, 11: 139–147. Google Scholar
  • 25. J. S. Marihno-Filho 1991. The coexistence of two frugivorous bats species and the phenology of their food plants in Brazil. Journal of Tropical Ecology, 7: 59–67. Google Scholar
  • 26. K. McGarigal , S. A. Cushman , M. C. Neel , and E. Ene . 2002. FRAGSTATS: spatial pattern analysis program for categorical maps. Available at http://www.umass.edu/landeco/research/ fragstats/fragstats.html . Google Scholar
  • 27. R. A. Medellín , H. T. Arita , and O. Sánchez . 2008. Identificación de los murciélagos de México, clave de campo, 2nd edition. Asociación Mexicana de Mastozoología, México, D.F., 83 pp. Google Scholar
  • 28. A. Medina , C. A. Harvey , D. S. Merlo , S. Vílchez , and B. Hernández . 2007. Bat diversity and movement in an agricultural landscape in Matiguás, Nicaragua. Biotropica, 39: 120–128. Google Scholar
  • 29. S. Montiel , A. Estrada , and P. León . 2006. Bat assemblages in a naturally fragmented ecosystem in the Yucatan Peninsula, Mexico: species richness, diversity and spatio-temporal dynamics. Journal of Tropical Ecology, 22: 267–276. Google Scholar
  • 30. N. Pinto , and T. H. Keitt . 2008. Scale-dependent responses to forest cover displayed by frugivore bats. Oikos, 117: 1725–1731. Google Scholar
  • 31. R Development Core Team. 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org . Google Scholar
  • 32. F. Reid 2009. A field guide to the mammals of Central America and southeast Mexico, 2nd edition. Oxford University Press, New York, NY, 384 pp. Google Scholar
  • 33. G. G. A. Remmers , and H. De Koeijer . 1992. The T'olche', a Maya system of communally managed forest belts: the causes and consequences of its disappearance. Agroforestry Systems, 18: 149–177. Google Scholar
  • 34. K. Rex , B. I. Czaczkes , R. Michener , T. H. Kunz , and C. C. Voigt . 2010. Specialization and omnivory in diverse mammalian assemblages. Ecoscience, 17: 37–46. Google Scholar
  • 35. R. A. Saldaña-Vázquez , and M. A. Munguía-Rosas . 2013. Lunar phobia in bats and its ecological correlates: a meta-analysis. Mammalian Biology, 78:216–219. Google Scholar
  • 36. R. A. Saldaña-Vázquez , V. J. Sosa , J. R. Hernández-Montero , and F. López-Barrera . 2010. Abundance responses of frugivorous bats (Stenodermatinae) to coffee cultivation and selective logging practices in mountainous central Veracruz, Mexico. Biodiversity and Conservation, 19: 2111–2124. Google Scholar
  • 37. M. Schulze , N. Seavy , and D. Whitacre . 2000. A comparison of the Phyllostomid bat assemblages in undisturbed Neotropical forest and forest fragments of a slash-and-burn farming mosaic in Peten, Guatemala. Biotropica, 32: 174–184. Google Scholar
  • 38. S. Swartz , P. W. Freeman , and E. F. Stockwell . 2003. Eco-morphology of bats: comparative and experimental approaches relating structural design to ecology. Pp. 257–300, in Bat ecology ( T. H. Kunz , and M. B. Fenton , eds.). University of Chicago Press, Chicago, 798 pp. Google Scholar
  • 39. V. M. Toledo , N. B. Bassols , E. G. Frapolli , and P. A. Chaires . 2008. Uso múltiple y biodiversidad entre los mayas yucatecos (México). Interciencia, 33: 345–352. Google Scholar
  • 40. M. Valdez-Hernandez , J. L. Andrade , P. C. Jackson , and M. Rebolledo-Vieyra . 2010. Phenology of five tree species of a tropical dry forest in Yucatan, Mexico: effects of environmental and physiological factors. Plant Soil, 329: 155–171. Google Scholar
  • 41. M. R. Willig , S. J. Presley , C. P. Bloch , C. L. Hice , S. P. Yanoviak , M. M. Díaz , L. Arias Chauca , V. Pacheco , and S. C. Weaver . 2007. Phyllostomid bats of lowland Amazonia: Effects of habitat alteration on abundance. Biotropica, 39: 737–746. Google Scholar

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7097f774-add7-4a32-b6ad-d968dd8debcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.