PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 17 | 2 |

Tytuł artykułu

Improvement of silymarin content in cell cultures of Silybum marianum by copper sulphate elicitor

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Silybum marianum L. (Milk thistle) extracts are the main source of silymarin that is a mixture of various flavonolignan (silybin (silibinin), silydianin and silychristin). Silymarin of milk thistle has a hepatoprotective activity for liver cirrhosis and chronic inflammatory. Silybum marianum regeneration from hypocotyl explants and evaluation of their callogenesis, growth and total flavolignan (silymarin) upon copper sulphate (as abiotic elicitor) elicitation was targeted. Copper sulphate (CuSO4) was applied in concentrations of 0, 3, 5, 7 and 9 µM to elicit the silymarin production in cultures. The elicitation periods used in this study were 2, 4, 7, 14 and 28 days. Half-strength MS medium recorded better results relative to full-strength MS one and seed incubation in the darkness at room temperature resulted in rapid germination and reached to the gar lid after 10 days. Callus fresh and dry weights as well as growth index were gradually increased with increasing the copper sulphate concentration till 5 µM while decreased thereafter at any elicitation period. With the increase of the elicitation period, the increase of the previous parameters was observed. Flavonolignan (silymarin) was positively correlated with CuSO4 levels since all levels of copper sulphate significantly enhanced its content in relative to the control. Additionally, more silymarin was accumulated after 4 or 7 days and the accumulation significantly decreased when the elicitation period reached 14 days more. The highest silymarin (flavolignan) content (11.79 and 11.67 mg g–1 DW) was obtained when 5 or 7 µM copper sulphate levels were combined with 4 days elicitation period, being about five-fold of the control.

Wydawca

-

Rocznik

Tom

17

Numer

2

Opis fizyczny

p.105-114,fig.,ref.

Twórcy

  • Department of Biotechnology, Faculty of Science, Taif University, Saudi, Arabia
  • National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Egypt
  • Department of Biology, Faculty of Science, Taif University, Saudi Arabia
  • Department of Horticulture, Faculty of Agriculture, Tanta University, Egypt

Bibliografia

  • Abbasi, B.H., Khan, M.A., Mahmood, T., Ahmad, M., Chaudhary, M.F., Khan, M.A. (2010). Shoot regeneration and free-radical scavenging activity in Silybum marianum L. Plant Cell Tiss. Organ Cult., 101, 371–376.
  • AL-Mayahi, A.M.W. (2014). Effect of copper sulphate and cobalt chloride on growth of the in vitro culture tissues for date palm (Phoenix dactylifera L.) cv. Ashgar. Amer. J. Agric. Biol. Sci., 9(1), 6–18.
  • Ashtiani, S.R., Hasanloo, T., Bihamta, M.R. (2010). Enhanced production of silymarin by Ag+ elicitor in cell suspension cultures of Silybum marianum. Pharma. Biol., 48(6), 708–715.
  • Bekheet, S.A., Taha, H.S., Gabr, A.M.M. (2013). Protocol for in vitro morphogenesis and hairy root cultures of Milk thistle (Silybum marianum L. Gaertn). J. Appl. Sci. Res., 9(1), 860–866.
  • Bhuiyan, N.H., Adachi, T. (2003). Stimulation of betacyanin synthesis through exogenous methyl jasmonate and other elicitors in suspension-cultured cells of Portulaca. J. Plant Physiol., 160, 1117–1124.
  • Bota, C., Deliu, C. (2011). The effect of copper sulphate on the production of flavonoids in Digitalis
  • lanata cell cultures. Farmacia, 59(1), 11–118.
  • Cacho, M., Moran, M., Corchete, P., Fernandez-Tarrago, J. (1999). Influence of medium composition on the accumulation of flavonolignans in cultured cells of Silybum marianum (L.) Gaertn. Plant Sci., 144, 63–68.
  • Davis-Searles, P.R., Nakanishi, Y., Kim, N., Graf, T.N., Oberlies, N.H., Wani, M.C., Wall, M.E., Agarwal, R., Kroll, D.J. (2005). Milk thistle and prostate cancer: differential effects of pure flavonolignans from Silybum marianum on antiproliferative end points in human prostate carcinoma cells. Cancer Res., 65(10), 4448– 4457.
  • El Sherif, F., Khattab, S., Ibrahim, A.K., Ahmed, S.A. (2013). Improved silymarin content in elicited multiple shoot cultures of Silybum marianum L. Physiol. Mol. Biol. Plants, 19(1), 127–136.
  • Firouzi, A., Mohammadi, S.A., Khosrowchahli, M., Movafeghi, A., Hasanloo, T. (2013). Enhancement of silymarin production in cell culture of Silybum marianum (L) Gaertn by elicitation and precursor feeding. J. Herb. Spi. Med. Plants, 19(3), 262–274.
  • Gažák, R., Walterová, D., Kren, V. (2007). Silybin and silymarin – new and emerging application in medicine. Curr. Med. Chem., 14, 315–338.
  • Groves, R.H., Kaye, P.E. (1989). Germination and phenology of seven introduced thistle species in southern Australia. Aust. J. Bot., 37, 351–359.
  • Hammouda, F.M., Hassan, N.M., Zaki, A.K., Kamel, A., Rimpler, H. (1993). Evaluation of the silymarin content in Silybum marianum (L.) Gaertn. Cultivated under different agricultural conditions. Phytother. Res., 7(1), 90–91.
  • Hasanloo, T., Khavari-Nejad, R.A., Majidi, E., Shams Ardakani, M.R. (2008). Flavonolignan production in cell suspension culture of Silybum marianum. Pharma. Biol., 46(12), 876–882.
  • Hernandez, X.E., Orden, A.A., Giordano, O.S., Kurina, M. (2005). Effects of elicitor and copper sulphate on grindelic acid production in submerged cultures of Grindelia pulchella. Electron. J. Biotech., 8(3), 276–283.
  • Jain, S.M., Saxena, P.K. (2009). Protocols for In vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Humana Press, New York. Jung, H.J., Park, J.W., Lee, J.S., Lee, S.R., Jang, B.C., Suh, S.I., Suh, M.H., Baek, W.K. (2009). Silibinin inhibits expression of HIF-1 alpha through suppression of protein translation in prostate cancer cells. Biochem. Biophys. Res. Comm., 390, 71–76.
  • Karadi, R.V., Kavatagimath, S.A., Gaviraj, E.N., Sastry, D.N., Chandrashekhara, S., Rajarajeshwari, N. (2007). Evaluation of Plumbago indica callus for its plumbagin content and antimicrobial activity. J. Cell Tiss. Res., 7(2), 1131–1136.
  • Kasparova, M., Siatka, T., Dusek, J. (2007). Abiotic elicitation of Trifolium pratense L. suspension culture. Ces. Sloven. Farm., 56, 225–229.
  • Khan, M.A., Abbasi, B.H., Ahmed, N., Ali, H. (2013). Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Ind. Crop. Prod., 46, 105–110.
  • Kim, S., Choi, M.G., Lee, H.S., Lee, S.K., Kim, S.H., Kim, W.W., Hur, S.M., Kim, J.H., Choe, J.H., Nam, S.J., Yang, J.H., Kim, S., Lee, J.E., Kim, J.S. (2009). Silibinin suppresses TNF-α-induced MMP-9 expression in gastric cancer cells through inhibition of the MAPK pathway. Molecules, 14, 4300–4311.
  • Kvasnicka, F., Biba, B., Sevcik, R., Voldrich, M., Kratka, J. (2003). Analysis of the active components of silymarin. J. Chromatogr., 990, 239–245.
  • Luper, S. (1998). A review of plants used in the treatment of liver disease: Part 1. Altern. Med. Rev., 6, 410–421.
  • Madrid, E., Corchete, P. (2010). Silymarin secretion and its elicitation by methyl jasmonate in cell cultures of Silybum marianum is mediated by phospholipase Dphosphatidic acid. J. Exp. Bot., 61(3), 747–754.
  • Manaf, H.H., Rabie, K.A.E., El-Aal, M.S.A. (2009). In vitro callus formation and plant regeneration of Silybum marianum (L.) Gaertn. Ann. Agric. Sci., 54(2), 283–289.
  • Meghreji Moin, A., Patel, C.N., Dave, J.B., Badmanaban, R., Patel, J.A. (2010). Validated method for silymarin by spectrophotometry in bulk drug and pharmaceutical formulations. J. Chem. Pharm. Res., 2(1), 396–400.
  • Mishra, Y., Rawat, R., Nema, B., Shirin, F. (2013). Effect of seed orientation and medium strength on in vitro germination of Pterocarpus marsupium Roxb. Not. Sci. Biol., 5(4), 476–479.
  • Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant., 15, 473–497.
  • Namdeo, A.G., (2007). Plant cell elicitation for production of secondary metabolites. Pharm Rev., 1(1), 69–79.
  • Patel, H., Krishnamurthy, R. (2013). Elicitors in plant tissue culture. J. Pharmacogn. Phytochem., 2(2), 60–65.
  • Pourjabar, A., Mohammadi, S. A., Ghahramanzadeh, R., Salimi, Gh. (2012). Effect of genotype, explant type and growth regulators on the accumulation of flavonoides of (Silybum marianum L.) in in vitro culture. World Acad. Sci. Eng. Tech., 67, 1005–1214.
  • Radman, R., Saez, T., Bucke, C., Keshavarz, T. (2003). Elicitation of plants and microbial cell systems. Biotechnol. Appl. Biochem., 37, 91–102.
  • Roustakhiz, J., Saboki, E. (2016). Plant tissue culture of Silybum Marianum L. and check out elicitor effect on the amount of silymarin. J. Novel Appl. Sci., 5(5), 161–168.
  • Sánchez-Sampedro, M.A., Fernandez-Tarrago, J., Corchete, P. (2005). Yeast extract and methyl jasmonateinduced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. J. Biotech., 119, 60–69.
  • Sánchez-Sampedro, M.A., Fernandez-Tarrago, J., Corchete, P. (2009). Elicitation of silymarin in cell cultures of Silybum marianum: effect of subculture and repeated addition of methyl jasmonate. Biotech. Lett., 31, 1633–1637.
  • Shaker, E., Mahmoud, H., Mnaa, S. (2010). Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food Chem. Toxicol., 48, 803–806.
  • Singh, R.P., Agarwal, R. (2009). Cosmeceuticals and silibinin. Clin. Dermatol., 27, 479–484.
  • Tumova, L., Rimakova, J., Tuma, J., Dusek, J. (2006). Silybum marianum in vitro flavonolignan production. Plant Soil Environ., 52(10), 454–458.
  • Tumova, L., Tuma J., Dolezal, M. (2011). Pyrazinecarboxamides as potential elicitors of flavonolignan and flavonoid production in Silybum marianum and Ononis arvensis cultures in vitro. Molecules, 16, 9142–9152.
  • Tumova, L., Gallova, K., Rimakova, J., Dolezal, M., Tuma, J. (2005). The effect of substituted amides of pyrazine-2-carboxylic acids on flavonolignan production in Silybum marianum culture in vitro. Acta Physiol. Plant., 27(3B), 257–262.
  • Vasconsuelo, A., Boland, R. (2007). Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci., 172, 861–875.
  • Vijaya, S.,N., Udayasri, P., Aswani Kumar, Y.V.V., Ravi Babu, B., Phani Kumar, Y., Vijay Varma, M. (2010). Advancements in the production of secondary metabolites. J. Nat. Prod., 3, 112–123.
  • Wichtl, M. (2004). Herbal drugs and phytopharmaceuticals, Third Edition. A handbook for practice on a scientific basis. CRC Press, Boca Raton–London–New York–Washington, D.C. Abbasi, B.H., Khan, M.A., Mahmood, T., Ahmad, M., Chaudhary, M.F., Khan, M.A. (2010). Shoot regeneration and free-radical scavenging activity in Silybum marianum L. Plant Cell Tiss. Organ Cult., 101, 371–376.
  • AL-Mayahi, A.M.W. (2014). Effect of copper sulphate and cobalt chloride on growth of the in vitro culture tissues for date palm (Phoenix dactylifera L.) cv. Ashgar. Amer. J. Agric. Biol. Sci., 9(1), 6–18.
  • Ashtiani, S.R., Hasanloo, T., Bihamta, M.R. (2010). Enhanced production of silymarin by Ag+ elicitor in cell suspension cultures of Silybum marianum. Pharma. Biol., 48(6), 708–715.
  • Bekheet, S.A., Taha, H.S., Gabr, A.M.M. (2013). Protocol for in vitro morphogenesis and hairy root cultures of Milk thistle (Silybum marianum L. Gaertn). J. Appl. Sci. Res., 9(1), 860–866.
  • Bhuiyan, N.H., Adachi, T. (2003). Stimulation of betacyanin synthesis through exogenous methyl jasmonate and other elicitors in suspension-cultured cells of Portulaca. J. Plant Physiol., 160, 1117–1124.
  • Bota, C., Deliu, C. (2011). The effect of copper sulphate on the production of flavonoids in Digitalis
  • lanata cell cultures. Farmacia, 59(1), 11–118.
  • Cacho, M., Moran, M., Corchete, P., Fernandez-Tarrago, J. (1999). Influence of medium composition on the accumulation of flavonolignans in cultured cells of Silybum marianum (L.) Gaertn. Plant Sci., 144, 63–68.
  • Davis-Searles, P.R., Nakanishi, Y., Kim, N., Graf, T.N., Oberlies, N.H., Wani, M.C., Wall, M.E., Agarwal, R., Kroll, D.J. (2005). Milk thistle and prostate cancer: differential effects of pure flavonolignans from Silybum marianum on antiproliferative end points in human prostate carcinoma cells. Cancer Res., 65(10), 4448– 4457.
  • El Sherif, F., Khattab, S., Ibrahim, A.K., Ahmed, S.A. (2013). Improved silymarin content in elicited multiple shoot cultures of Silybum marianum L. Physiol. Mol. Biol. Plants, 19(1), 127–136.
  • Firouzi, A., Mohammadi, S.A., Khosrowchahli, M., Movafeghi, A., Hasanloo, T. (2013). Enhancement of silymarin production in cell culture of Silybum marianum (L) Gaertn by elicitation and precursor feeding. J. Herb. Spi. Med. Plants, 19(3), 262–274.
  • Gažák, R., Walterová, D., Kren, V. (2007). Silybin and silymarin – new and emerging application in medicine. Curr. Med. Chem., 14, 315–338.
  • Groves, R.H., Kaye, P.E. (1989). Germination and phenology of seven introduced thistle species in southern Australia. Aust. J. Bot., 37, 351–359.
  • Hammouda, F.M., Hassan, N.M., Zaki, A.K., Kamel, A., Rimpler, H. (1993). Evaluation of the silymarin content in Silybum marianum (L.) Gaertn. Cultivated under different agricultural conditions. Phytother. Res., 7(1), 90–91.
  • Hasanloo, T., Khavari-Nejad, R.A., Majidi, E., Shams Ardakani, M.R. (2008). Flavonolignan production in cell suspension culture of Silybum marianum. Pharma. Biol., 46(12), 876–882.
  • Hernandez, X.E., Orden, A.A., Giordano, O.S., Kurina, M. (2005). Effects of elicitor and copper sulphate on grindelic acid production in submerged cultures of Grindelia pulchella. Electron. J. Biotech., 8(3), 276–283.
  • Jain, S.M., Saxena, P.K. (2009). Protocols for In vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Humana Press, New York. Jung, H.J., Park, J.W., Lee, J.S., Lee, S.R., Jang, B.C., Suh, S.I., Suh, M.H., Baek, W.K. (2009). Silibinin inhibits expression of HIF-1 alpha through suppression of protein translation in prostate cancer cells. Biochem. Biophys. Res. Comm., 390, 71–76.
  • Karadi, R.V., Kavatagimath, S.A., Gaviraj, E.N., Sastry, D.N., Chandrashekhara, S., Rajarajeshwari, N. (2007). Evaluation of Plumbago indica callus for its plumbagin content and antimicrobial activity. J. Cell Tiss. Res., 7(2), 1131–1136.
  • Kasparova, M., Siatka, T., Dusek, J. (2007). Abiotic elicitation of Trifolium pratense L. suspension culture. Ces. Sloven. Farm., 56, 225–229.
  • Khan, M.A., Abbasi, B.H., Ahmed, N., Ali, H. (2013). Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Ind. Crop. Prod., 46, 105–110.
  • Kim, S., Choi, M.G., Lee, H.S., Lee, S.K., Kim, S.H., Kim, W.W., Hur, S.M., Kim, J.H., Choe, J.H., Nam, S.J., Yang, J.H., Kim, S., Lee, J.E., Kim, J.S. (2009). Silibinin suppresses TNF-α-induced MMP-9 expression in gastric cancer cells through inhibition of the MAPK pathway. Molecules, 14, 4300–4311.
  • Kvasnicka, F., Biba, B., Sevcik, R., Voldrich, M., Kratka, J. (2003). Analysis of the active components of silymarin. J. Chromatogr., 990, 239–245.
  • Luper, S. (1998). A review of plants used in the treatment of liver disease: Part 1. Altern. Med. Rev., 6, 410–421.
  • Madrid, E., Corchete, P. (2010). Silymarin secretion and its elicitation by methyl jasmonate in cell cultures of Silybum marianum is mediated by phospholipase Dphosphatidic acid. J. Exp. Bot., 61(3), 747–754.
  • Manaf, H.H., Rabie, K.A.E., El-Aal, M.S.A. (2009). In vitro callus formation and plant regeneration of Silybum marianum (L.) Gaertn. Ann. Agric. Sci., 54(2), 283–289.
  • Meghreji Moin, A., Patel, C.N., Dave, J.B., Badmanaban, R., Patel, J.A. (2010). Validated method for silymarin by spectrophotometry in bulk drug and pharmaceutical formulations. J. Chem. Pharm. Res., 2(1), 396–400.
  • Mishra, Y., Rawat, R., Nema, B., Shirin, F. (2013). Effect of seed orientation and medium strength on in vitro germination of Pterocarpus marsupium Roxb. Not. Sci. Biol., 5(4), 476–479.
  • Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant., 15, 473–497.
  • Namdeo, A.G., (2007). Plant cell elicitation for production of secondary metabolites. Pharm Rev., 1(1), 69–79.
  • Patel, H., Krishnamurthy, R. (2013). Elicitors in plant tissue culture. J. Pharmacogn. Phytochem., 2(2), 60–65.
  • Pourjabar, A., Mohammadi, S. A., Ghahramanzadeh, R., Salimi, Gh. (2012). Effect of genotype, explant type and growth regulators on the accumulation of flavonoides of (Silybum marianum L.) in in vitro culture. World Acad. Sci. Eng. Tech., 67, 1005–1214.
  • Radman, R., Saez, T., Bucke, C., Keshavarz, T. (2003). Elicitation of plants and microbial cell systems. Biotechnol. Appl. Biochem., 37, 91–102.
  • Roustakhiz, J., Saboki, E. (2016). Plant tissue culture of Silybum Marianum L. and check out elicitor effect on the amount of silymarin. J. Novel Appl. Sci., 5(5), 161–168.
  • Sánchez-Sampedro, M.A., Fernandez-Tarrago, J., Corchete, P. (2005). Yeast extract and methyl jasmonateinduced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. J. Biotech., 119, 60–69.
  • Sánchez-Sampedro, M.A., Fernandez-Tarrago, J., Corchete, P. (2009). Elicitation of silymarin in cell cultures of Silybum marianum: effect of subculture and repeated addition of methyl jasmonate. Biotech. Lett., 31, 1633–1637.
  • Shaker, E., Mahmoud, H., Mnaa, S. (2010). Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food Chem. Toxicol., 48, 803–806.
  • Singh, R.P., Agarwal, R. (2009). Cosmeceuticals and silibinin. Clin. Dermatol., 27, 479–484.
  • Tumova, L., Rimakova, J., Tuma, J., Dusek, J. (2006). Silybum marianum in vitro flavonolignan production. Plant Soil Environ., 52(10), 454–458.
  • Tumova, L., Tuma J., Dolezal, M. (2011). Pyrazinecarboxamides as potential elicitors of flavonolignan and flavonoid production in Silybum marianum and Ononis arvensis cultures in vitro. Molecules, 16, 9142–9152.
  • Tumova, L., Gallova, K., Rimakova, J., Dolezal, M., Tuma, J. (2005). The effect of substituted amides of pyrazine-2-carboxylic acids on flavonolignan production in Silybum marianum culture in vitro. Acta Physiol. Plant., 27(3B), 257–262.
  • Vasconsuelo, A., Boland, R. (2007). Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci., 172, 861–875.
  • Vijaya, S.,N., Udayasri, P., Aswani Kumar, Y.V.V., Ravi Babu, B., Phani Kumar, Y., Vijay Varma, M. (2010). Advancements in the production of secondary metabolites. J. Nat. Prod., 3, 112–123.
  • Wichtl, M. (2004). Herbal drugs and phytopharmaceuticals, Third Edition. A handbook for practice on a scientific basis. CRC Press, Boca Raton–London–New York–Washington, D.C.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6db54853-cb7e-4ada-a7b4-5ca3f757e8da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.