PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2020 | 79 | 2 |

Tytuł artykułu

Therapeutic role of bone marrow mesenchymal stem cells in diabetic neuronal alternations of rat hippocampus

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: As the hippocampus is the main brain region for many forms of learning and memory functions and is acutely sensitive to blood glucose changes, diabetes mellitus, which is a serious metabolic disease, is often accompanied by learning and memory deficits. Through scientific literatures, mesenchymal stem cells (MSCs) promote functional recovery in rats with traumatic brain injury, so the present work was conducted to study MSCs as a possible treatment for the diabetic neuronal degeneration and functional impairment of rat hippocampus. Materials and methods: It was carried out using male albino rats: non-diabetic control groups (4, 8, 12 weeks) (n = 15), diabetic groups by i.v. injection of streptozotocin for (4, 8, 12 weeks) (n = 15) and MSCs treatment to diabetic groups for (8, 12 weeks) (n = 10). Hippocampal learning and memory functions were assessed by the Morris Water Maze test and its results were statistically analysed. The rat hippocampal regions (CA1 and CA3) were subjected to histological, ultrastructural examination and morphometrical analyse of pyramidal neurons. Results: Neurons of the diabetic groups showed disturbed function and architecture; shrunken hyperchromatic nuclei and vacuolated eosinophilic cytoplasm (apoptotic changes) also MSCs treatment improved hippocampal learning and memory functions plus its architectural changes; increasing populations and normal regular distribution. Conclusions: It can be concluded that diabetic hippocampal neuronal alternations and functional impairment can be ameliorated by MSCs treatment. (Folia Morphol 2020; 79, 2: 211–218)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

79

Numer

2

Opis fizyczny

p.211-218,fig.,ref.

Twórcy

autor
  • Department of Anatomy, Faculty of Medicine, Beni-Suef University, Egypt
autor
  • Department of Anatomy, Kasr El Aini Faculty of Medicine, Cairo University, Egypt
autor
  • Department of Biochemistry, Kasr El Aini Faculty of Medicine, Cairo University, Egypt
autor
  • Department of Anatomy, Faculty of Medicine, Beni-Suef University, Egypt
autor
  • Department of Anatomy, Faculty of Medicine, Beni-Suef University, Egypt

Bibliografia

  • 1. Alexanian AR, Maiman DJ, Kurpad SN, et al. In vitro and in vivo characterization of neurally modified mesenchymal stem cells induced by epigenetic modifiers and neural stem cell environment. Stem Cells Dev. 2008; 17(6): 1123–1130, doi: 10.1089/scd.2007.0212, indexed in Pubmed: 18484898.
  • 2. Bree A, Puente E, Daphna-Iken D, et al. Diabetes increases brain damage caused by severe hypoglycemia. Am J Physiol-Endocrinol Metabolism. 2009; 297(1): E194–E201, doi: 10.1152/ajpendo.91041.2008, indexed in Pubmed: 19435850.
  • 3. Biessels GJ, van der Heide LP, Kamal A, et al. Ageing and diabetes: implications for brain function. Eur J Pharmacol. 2002; 441(1-2): 1–14, doi: 10.1016/s0014-2999(02)01486-3, indexed in Pubmed: 12007915.
  • 4. Calió ML, Marinho DS, Ko GMi, et al. Transplantation of bone marrow mesenchymal stem cells decreases oxidative stress, apoptosis, and hippocampal damage in brain of a spontaneous stroke model. Free Radic Biol Med. 2014; 70: 141–154, doi: 10.1016/j.freeradbiomed.2014.01.024, indexed in Pubmed: 24525001.
  • 5. Chen J, Li Yi, Katakowski M, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003; 73(6): 778–786, doi: 10.1002/jnr.10691, indexed in Pubmed: 12949903.
  • 6. Chopp M, Li Yi. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 2002; 1(2): 92–100, doi: 10.1016/s1474-4422(02)00040-6, indexed in Pubmed: 12849513.
  • 7. Crigler L, Robey RC, Asawachaicharn A, et al. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol. 2006; 198(1): 54–64, doi: 10.1016/j.expneurol.2005.10.029, indexed in Pubmed: 16336965.
  • 8. Deng J, Petersen BE, Steindler DA, et al. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells. 2006; 24(4): 1054–1064, doi: 10.1634/stemcells.2005-0370, indexed in Pubmed: 16322639.
  • 9. Emad NG, Safwat WG, Joseph NA, et al. Role of mesenchymal stem cell therapy in cisplatin induced nephrotoxicity in adult albino rats: ultrastructural & biochemical study. Acta Medica International. 2014; 1(2): 57–66, doi: 10.5530/ami.2014.2.3.
  • 10. Gardoni F, Kamal A, Bellone C, et al. Effects of streptozotocin-diabetes on the hippocampal NMDA receptor complex in rats. J Neurochem. 2002; 80(3): 438–447, doi: 10.1046/j.0022-3042.2001.00713.x, indexed in Pubmed: 11908465.
  • 11. Greco SJ, Zhou C, Ye JH, et al. A method to generate human mesenchymal stem cell-derived neurons which express and are excited by multiple neurotransmitters. Biol Proced Online. 2008; 10: 90–101, doi: 10.1251/bpo147, indexed in Pubmed: 19461957.
  • 12. Jafari AI, Barzegar GH, Pourheidar M. The protective effects of insulin and natural honey against hippocampal cell death in streptozotocin-induced diabetic rats. J Diabetes Res. ; 2014: 491571.
  • 13. Jiang J, Lv Z, Gu Y, et al. Adult rat mesenchymal stem cells differentiate into neuronal-like phenotype and express a variety of neuro-regulatory molecules in vitro. Neurosci Res. 2010; 66(1): 46–52, doi: 10.1016/j.neures.2009.09.1711, indexed in Pubmed: 19808065.
  • 14. Kamal A, Biessels GJ, Urban I, et al. Hippocampal synaptic plasticity in streptozotocin-diabetic rats: impairment of long-term potentiation and facilitation of longterm depression. Neuroscience. 1999; 90(3): 737–745, doi: 10.1016/s0306-4522(98)00485-0.
  • 15. Kim S, Chang KA, Kim Ja, et al. The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer’s disease mice. PLoS One. 2012; 7(9): e45757, doi: 10.1371/journal.pone.0045757, indexed in Pubmed: 23049854.
  • 16. Kumar SK, Perumal S, Rajagopalan V. Therapeutic effect of bone marrow mesenchymal stem cells on cold stress induced changes in the hippocampus of rats. Neural Regen Res. 2014; 9(19): 1740–1744, doi: 10.4103/1673-5374.143416, indexed in Pubmed: 25422634.
  • 17. Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci. 1998; 112(5): 1199–1208, doi: 10.1037//0735-7044.112.5.1199, indexed in Pubmed: 9829797.
  • 18. Lee I, Jerman TS, Kesner RP. Disruption of delayed memory for a sequence of spatial locations following CA1- or CA3-lesions of the dorsal hippocampus. Neurobiol Learn Mem. 2005; 84(2): 138–147, doi: 10.1016/j.nlm.2005.06.002, indexed in Pubmed: 16054848.
  • 19. Li ZG, Zhang W, Grunberger G, et al. Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res. 2002; 946(2): 221–231, doi: 10.1016/s0006-8993(02)02887-1, indexed in Pubmed: 12137925.
  • 20. Liu L, Xuan C, Shen P, et al. Hippocampal Mechanisms Underlying Impairment in Spatial Learning Long After Establishment of Noise-Induced Hearing Loss in CBA Mice. Front Syst Neurosci. 2018; 12: 35, doi: 10.3389/fnsys.2018.00035, indexed in Pubmed: 30087600.
  • 21. McEwen BS, Magariños AM, Reagan LP. Studies of hormone action in the hippocampal formation: possible relevance to depression and diabetes. J Psychosom Res. 2002; 53(4): 883–890, doi: 10.1016/s0022-3999(02)00307-0, indexed in Pubmed: 12377298.
  • 22. Magariños AM, McEwen BS. Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc Natl Acad Sci U S A. 2000; 97(20): 11056–11061, doi: 10.1073/pnas.97.20.11056, indexed in Pubmed: 11005876.
  • 23. Malone JI, Hanna S, Saporta S, et al. Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory. Pediatr Diabetes. 2008; 9(6): 531–539, doi: 10.1111/j.1399-5448.2008.00431.x, indexed in Pubmed: 19067891.
  • 24. Matchynski-Franks JJ, Pappas C, Rossignol J, et al. Mesenchymal Stem Cells as Treatment for Behavioral Deficits and Neuropathology in the 5xFAD Mouse Model of Alzheimer’s Disease. Cell Transplant. 2016; 25(4): 687–703, doi: 10.3727/096368916X690818, indexed in Pubmed: 26850119.
  • 25. Mezey E, Key S, Vogelsang G, et al. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci U S A. 2003; 100(3): 1364–1369, doi: 10.1073/pnas.0336479100, indexed in Pubmed: 12538864.
  • 26. Munoz JR, Stoutenger BR, Robinson AP, et al. Human stem//progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A. 2005; 102(50): 18171–18176, doi: 10.1073/pnas.0508945102, indexed in Pubmed: 16330757.
  • 27. Orlovsky MA, Spiga F, Lebed YV, et al. Early molecular events in the hippocampus of rats with streptozotocin-induced diabetes. Neurophysiology. 2008; 39(6): 435–438, doi: 10.1007/s11062-008-9000-0.
  • 28. Prockop DJ. “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther. 2007; 82(3): 241–243, doi: 10.1038/sj.clpt.6100313, indexed in Pubmed: 17700588.
  • 29. Revsin Y, Saravia F, Roig P, et al. Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes. Brain Res. 2005; 1038(1): 22–31, doi: 10.1016/j.brainres.2004.12.032, indexed in Pubmed: 15748869.
  • 30. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000; 164(2): 247–256, doi: 10.1006/exnr.2000.7389, indexed in Pubmed: 10915564.
  • 31. Schoenle EJ, Schoenle D, Molinari L, et al. Impaired intellectual development in children with type I diabetes: association with HbA(1c), age at diagnosis and sex. Diabetologia. 2002; 45(1): 108–114, doi: 10.1007/s125-002-8250-6, indexed in Pubmed: 11845229.
  • 32. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006; 1(2): 848–858, doi: 10.1038/nprot.2006.116, indexed in Pubmed: 17406317.
  • 33. Yang H, Fan S, Song D, et al. Long-term streptozotocin-induced diabetes in rats leads to severe damage of brain blood vessels and neurons via enhanced oxidative stress. Mol Med Rep. 2013; 7(2): 431–440, doi: 10.3892/mmr.2012.1227, indexed in Pubmed: 23232924.
  • 34. Ye M, Wang XJ, Zhang YH, et al. Therapeutic effects of differentiated bone marrow stromal cell transplantation on rat models of Parkinson’s disease. Parkinsonism Relat Disord. 2007; 13(1): 44–49, doi: 10.1016/j.parkreldis.2006.07.013, indexed in Pubmed: 17005432.
  • 35. Zhang H, Huang Z, Xu Y, et al. Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage. Neurol Res. 2006; 28(1): 104–112, doi: 10.1179/016164106X91960, indexed in Pubmed: 16464372.
  • 36. Zhao F, Li J, Mo L, et al. Changes in neurons and synapses in hippocampus of streptozotocin-induced type 1 diabetes rats: a stereological investigation. Anat Rec (Hoboken). 2016; 299(9): 1174–1183, doi: 10.1002/ar.23344, indexed in Pubmed: 27064698.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6db366d4-c0e1-4c87-a608-787f4e6f14fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.