PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 4 |

Tytuł artykułu

Bioremoval of Tl (I) by PVA-immobilized sulfate-reducing bacteria

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
As scattered elements, thallium (Tl) contamination poses a significant threat to human health due its high toxicity. Sulfate-reducing bacteria (SRB) embedded in PVA-sodium alginate matrix was utilized as a novel bio-remover to remove Tl from aqueous solution. The effect of pH, temperature, and initial Tl concentration on removal capacity of immobilized beads were studied and discussed in this work. The optimum bio-removal conditions were at pH value of 6, temperature of 35ºC, and initial Tl concentration of 50 mg.L⁻¹. The pseudo second-order model for Tl adsorption was applicable to all the removal data over the entire time range and intralayer diffusion was not the only rate-determining step. The bio-removal data conformed well to Langmuir isotherm model. Fourier transform infrared spectroscopy showed that sulfate reduction played an important role in Tl removal. The groups of carboxylate radical might be involved in sulfate reduction reaction.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

4

Opis fizyczny

p.1865-1873,fig.,ref.

Twórcy

autor
  • School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
autor
  • School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
autor
  • School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
autor
  • School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
autor
  • Guangdong Provincial Key Laboratory of Radionuclide Pollution Control and Resources, Guangzhou, 510006, China
autor
  • School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
  • Guangdong Provincial Key Laboratory of Radionuclide Pollution Control and Resources, Guangzhou, 510006, China
autor
  • Key Laboratory for Water Quality Security and Protection in the Pearl River Delta, Ministry of Education and Guangdong Province, Guangzhou, 510006, China

Bibliografia

  • 1. Peter A.L.J., Viraraghavan T. Thallium: a review of public health and environmental concerns. Environment international. 31, 493, 2005.
  • 2. Keith L.H., Telliard W.A. Priority Pollutants: I. A Perspective View. Environmental Science & Technology. 13, 416, 1979.
  • 3. Mulkey J.P., Oehme F.W. A review of thallium toxicity. Veterinary & Human Toxicology. 35, 445, 1993.
  • 4. Xiao T., Fei Y., Li S., Zheng B., Ning Z. Thallium pollution in China: A geo-environmental perspective. The Science of the total environment. 421-422, 51-8, 2012.
  • 5. Xiao T., Dan B., Guha J., Rouleau A., Hong Y., Zheng B. Groundwater-related thallium transfer processes and their impacts on the ecosystem: southwest Guizhou Province, China. Applied Geochemistry. 18, 675, 2003.
  • 6. Davies M., Figueroa L., Wildeman T., Bucknam C. The Oxidative Precipitation of Thallium at Alkaline pH for Treatment of Mining Influenced Water. Mine Water & the Environment. 35, 1, 2016.
  • 7. Peter A.L., Viraraghavan T. Thallium: a review of public health and environmental concerns. Environment international. 31, 493, 2005.
  • 8. Catherine W.B., Twidwell L.G. Removal of Thallium from Wastewater. Electrometallurgy & Environmental Hydrometallurgy. 2, 1717, 2013.
  • 9. Twidwell. L.G., Williams-Beam C. Potential Technologies for Removing Thallium from Mine and Process Wastewater: An Abbreviated Annotation of the Literature. The European Journal of Mineral Processing and Environmental Protection. 2, 1303, 2002.
  • 10. Fu F., Wang Q. Removal of heavy metal ions from wastewaters: a review. Journal of environmental management. 92, 407, 2011.
  • 11. Wang J., Chen C. Biosorbents for heavy metals removal and their future. Biotechnology advances. 27, 195, 2009.
  • 12. Urík M., Kramarová Z., Ševc J., Čerňanský S., Kališ M., Medved’ J., Littera P., Kolenčík M., Gardosova K. Biosorption and bioaccumulation of thallium(I) and its effect on growth of Neosartorya fischeri strain. Polish Journal of Environmental Studies. 19, 457, 2010.
  • 13. Wang J. Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry. 37, 847, 2002.
  • 14. He B., Yong K., Quan H., Yang H., Jiao S., Ying F. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. Bioresource technology. 128, 818, 2013.
  • 15. Mueller R.F. Microbially mediated thallium immobilization in bench scale systems. Mine Water and the Environment. 20, 17, 2001.
  • 16. Valo R.J., Häggblom M.M., Salkinoja-Salonen M.S. Bioremediation of chlorophenol containing simulated ground water by immobilized bacteria. Water research. 24, 253, 1990.
  • 17. Sun Y.M., Horng C.Y., Chang F.L., Cheng L.C., Tian W.X. Biosorption of lead, Mercury, and cadmium ions by Aspergillus terreus immobilized in a natural matrix. Polish Journal of Microbiology. 59, 37, 2010.
  • 18. KisielewskaM. Ultrasonic stimulation of co-immobilized Saccharomyces cerevisiae cells and β-galactosidase enzyme for enhanced ethanol production from whey ultrafiltration permeate. Polish Journal of Environmental Studies. 21, 387, 2012.
  • 19. de-Bashan L.E., Bashan Y. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource technology. 101, 1611, 2010.
  • 20. Min X., Chai L., Zhang C., Takasaki Y., Okura T. Control of metal toxicity, effluent COD and regeneration of gel beads by immobilized sulfate-reducing bacteria. Chemosphere. 72, 1086, 2008.
  • 21. Hayashi H., Syogase N., Tsuneda S., Hirata A., Sasaki H. Removal of Low Concentrated Cadmium Ions Using Fixed-bed Sulfate-Reducing Bioreactor with FS Carrier. Journal of Mmij. 119, 559, 2003.
  • 22. Hsu H.F., Jhuo Y.S., Kumar M., Ma Y.S., Lin J.G. Simultaneous sulfate reduction and copper removal by a PVA-immobilized sulfate reducing bacterial culture. Bioresource technology. 101, 4354, 2010.
  • 23. Di J., Jiang F., Dai N., Zhu Z. Characteristics in immobilization process of sulfate reducing bacteria sludge. Chinese Journal of Environmental Engineering. 9, 2227, 2015.
  • 24. Li X., Dai L., Zhang C., Zeng G., Liu Y., Zhou C., Xu W., Wu Y., Tang X., Liu W. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient. Journal of hazardous materials. 2016.
  • 25. Sun J., Liu J., Liu Y., Li Z., Nan J. Optimization of Entrapping Conditions of Nitrifying Bacteria and Selection of Entrapping Agent. Procedia Environmental Sciences. 8, 166, 2011.
  • 26. Rice E.W., Baird R.B., Eaton A.D., Clesceri L. Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC. 2012.
  • 27. Jin H., Ji Z., Li Y., Liu M., Yuan J., Xu C., Hou S. The preparation of a core/shell structure with alumina coated spherical silica powder. Colloids & Surfaces A Physicochemical & Engineering Aspects. 441, 170, 2014.
  • 28. Hao O.J., Chen J.M., Huang L., Buglass R.L. Sulfate – reducing bacteria. Critical Reviews in Environmental Science and Technology. 26, 155, 1996.
  • 29. Singh R., Kumar A., Kirrolia A., Kumar R., Yadav N., Bishnoi N.R., Lohchab R.K. Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresource technology. 102, 677, 2011.
  • 30. Reis M.A.M., Almeida J.S., Lemos P.C., Carrondo M.J.T. Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnology & Bioengineering. 40, 593, 1992.
  • 31. Bajpai J., Shrivastava R., Bajpai A.K. Dynamic and equilibrium studies on adsorption of Cr(VI) ions onto binary bio-polymeric beads of cross linked alginate and gelatin. Colloids & Surfaces A Physicochemical & Engineering Aspects. 236, 81, 2004.
  • 32. Widdel F., Hansen T.A., Balows A., Truper H.G., Dworkin M., Harder W., Schleifer K.H. The dissimilatory sulfate- and sulfur-reducing bacteria: Springer Berlin Heidelberg; 1992.
  • 33. Pan X., Wang J.Z.D. Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Biochemistry. 40, 2799, 2005.
  • 34. Laus R., Costa T.G., Szpoganicz B., Fávere V.T. Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. Journal of hazardous materials. 183, 233, 2010.
  • 35. Iram M., Chen G., Guan Y., Ishfaq A., Liu H. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe₃O₄ hollow nanospheres. Journal of hazardous materials. 181, 1039, 2010.
  • 36. Zhou X., Wei J., Liu K., Liu N., Zhou B. Adsorption of bisphenol A based on synergy between hydrogen bonding and hydrophobic interaction. Langmuir the Acs Journal of Surfaces & Colloids. 30, 13861, 2014.
  • 37. Weber W.J., Morris J.C. Kinetics of Adsorption on Carbon From Solution. Asce Sanitary Engineering Division Journal. 1, 1, 1963.
  • 38. He Y.F., Ling Z., Wang R.M., Li H.R., Yan W. Loess clay based copolymer for removing Pb(II) ions. Journal of hazardous materials. 227, 334, 2012.
  • 39. Fytianos K., Voudrias E., Kokkalis E. Sorption- – desorption behaviour of 2,4-dichlorophenol by marine sediments. Chemosphere. 40, 3, 2000.
  • 40. Liu J., Chen M., Chen Z., Yan W. Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. Journal of hazardous materials. 184, 392, 2010.
  • 41. Xu P., Zeng G.M., Dan L.H., Cui L., Mei H.Z., Zhen W., Ning J.L., Chao H., Geng X.X. Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium : Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chemical Engineering Journal. 203, 423, 2012.
  • 42. Mathé C., Weill C.O., Mattioli T.A., Berthomieu C., Houée-Levin C., Tremey E., Nivière V. Assessing the role of the active-site cysteine ligand in the superoxide reductase from Desulfoarculus baarsii. Journal of Biological Chemistry. 282, 22207, 2007.
  • 43. Cao J.J., Jiang Z.T., Xiong Z.H., Yang Y.N. Study on infrared spectra characteristics of fault particles of the sulfide deposit. Spectroscopy & Spectral Analysis. 29, 956, 2009.
  • 44. Lane M.D. Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals[J]. American Mineralogist, 92, 1, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6d85ae57-b9e7-402a-813b-f188fde72a63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.