PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 62 | 3 |

Tytuł artykułu

Optimization of bioinsecticides overproduction by Bacillus thuringiensis subsp. kurstaki using linear regression

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A multiple linear regression analyses were performed to screen for the significant factors simultaneously influencing production of delta-endotoxin, proteolytic activities and spore formation by a Bacillus thuringiensis kurstaki strain. Investigated factors included: pH of the medium, available oxygen and inoculum size. It was observed that oxygen availability was the most influencing setting on both deltaendotoxins production and spores counts, followed by initial pH of the medium and inoculum size. On other hand, pH of medium was found to be the most significant parameter for proteolytic activity, followed by inoculum size and dissolved oxygen. Our results suggested that the first order with two-factor interaction model seemed to be more satisfactory than simple first order model for optimization of delta-endotoxin overproduction. The coefficients of determination (R²) indicated a better adequacy of the second order models to justify the obtained data. Based on results, relationships between delta-endotoxins production, proteolytic activities and spores counts were established. Our results can help to balance delta-endotoxins production and its stability.

Wydawca

-

Rocznik

Tom

62

Numer

3

Opis fizyczny

p.287-293,fig.,ref.

Twórcy

autor
  • Team of Biopesticides (LPIP), Centre of Biotechnology of Sfax, University of Sfax, Tunisia
autor
  • Unit of biostatistics and Bioinformatics, Centre of Biotechnology of Sfax, University of Sfax, Tunisia
autor
  • Team of Biopesticides (LPIP), Centre of Biotechnology of Sfax, University of Sfax, Tunisia

Bibliografia

  • Alves L.F.A., S.B. Alves, R.M. Pereira and D.M.F. Capalbo. 1997. Production of Bacillus thuringiensis var. kurstaki Berliner grown in alternative media. Biocontrol Sci. Techn. 7: 377–384.
  • Bibilos M. and R.E. Andrews. 1988. Inhibition of Bacillus thuringiensis proteases and their effects on crystal toxin proteins and cell free translations. Can. J. Microbiol. 34: 740–747.
  • Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
  • Celik E. and P. Calik. 2004. Bioprocess parameters and oxygen transfer characteristics in beta-lactamase production by Bacillus species. Biotechnol. Prog. 20: 491–499.
  • Chen C.Y., Y.H. Wang and C.J. Huang. 2004. Enhancement of the antifungal activity of Bacillus subtilis F29-3 by the chitinase encoded by Bacillus circulans chiA gene. Can. J. Microbiol. 50: 451–454.
  • Ejiofor A.O. and N. Okafor. 1989. Production of mosquito larvicidal Bacillus thuringiensis serotype H-14 on raw material media from Nigeria. J. Appl. Bacteriol. 67: 5–9.
  • Feitelson J.S. 1993. The Bacillus thuringiensis family tree, pp. 63–72. In: Kim L. (ed). Advanced Engineered Pesticides. Marcel Dekker Inc., New York.
  • Foda M.S., H.S. Salama and M. Selim. 1985. Factors affecting growth physiology of Bacillus thuringiensis. Appl. Microbiol. Biotechnol. 22: 50–52.
  • Freese E. and J. Heinze. 1984. Metabolic and genetic control of bacterial sporulation, pp.101–172. In: Hurst A., G.W. Gould and J. Dring (eds). The Bacterial spores. Academic Press, London.
  • Ghribi D., N. Zouari, H. Trabelsi and S. Jaoua. 2007a. Improvement of Bacillus thuringiensis delta-endotoxin production by overcome of carbon catabolite repression through adequate control of aeration. Enzyme Microb. Technol. 40: 614–622.
  • Ghribi D., N. Zouari, W. Trigui and S. Jaoua. 2007b. Use of sea water as salts source in starch and soya bean based media for production of Bacillus thuringiensis bioinsecticides. Process Biochem. 42: 374–378.
  • Khuri A.I. and J.A. Cornell. 1987. Response surfaces: Design and analyses. Marcel Dekker Inc., New York. Kunitz M. 1946. Crystalline soybean trypsin inhibitor. J. Gen. Physiol. 29: 149–154.
  • Maldonado-Blanco M.G., G. Solis-Romero and L.J. Galan-Wong. 2003. The effect of oxygen tension on the production of Bacillus thuringiensis subs. israelensis toxin active against Aedes aegypti larvae. World J. Microbiol. Biotechnol. 19: 671–674.
  • Moita C., S. Savluchinske Feio, L. Nunes, M. Joao Marcelo Curto and J.C. Roseiro. 2005. Optimization of physical factors on the production of active metabolites by B. subtilis 355 against wood surface contaminant fungi. Int. Biodeter. Biodegr. 55: 261–269.
  • Singh J., R.M. Vohra and D.K. Sahoo. 2004. Enhanced production of alkaline proteases by Bacillus sphaericus using fed-batch culture. Process Biochem. 39: 1093–1101.
  • Tyagi R.D., V. Sikati Foko, S. Barnabé, A. Vidyarthi, J.R. Valéro and R.Y. Surampalli. 2002. Simultaneous production of biopesticide and alkaline proteases by Bacillus thuringiensis using sludge as a raw material. Water Sci. Technol. 46: 247–254.
  • Zouari N., O. Achour and S. Jaoua. 2002. Production of delta-endotoxin by Bacillus thuringiensis subsp kurstaki and overcoming of catabolite repression by using highly concentrated gruel and fish meal media in 2-and 20-dm³ fermenters. J. Chem. Technol. Biotechnol. 77: 877–882.
  • Zouari N. and S. Jaoua. 1999. Production and characterization of metalloproteases synthesized concomitantly with delta-endotoxin by Bacillus thuringiensis subsp. kurstaki strain grown on gruel based media. Enzyme Microb. Tech. 25: 364–371.
  • Zouari N., A. Dhouib, R. Ellouz and S. Jaoua. 1998. Nutritional requirements of a strain of Bacillus thuringiensis subsp. kurstaki and use of gruel hydrolysate for the formulation of a new medium for delta-endotoxin production. Appl. Biochem. Biotech. 69: 41–52.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6d5cdd80-978c-47ab-ab59-5568355e31b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.