PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2020 | 79 | 2 |

Tytuł artykułu

Histological study of intestinal goblet cells, IgA, and CD3+ lymphocyte distribution in Huang-huai white goat

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Ten healthy adult Huang-huai white goats were selected and sacrificed by jugular vein bleeding after anaesthesia to observe the distribution characteristics of the histological structure of the intestinal mucosa, goblet cells, IgA, and CD3⁺ lymphocytes. Materials and methods: Three sections of the duodenum, the jejunum, and the ileum were immediately collected and fixed with 4% paraformaldehyde for 72 h to prepare tissue sections. After haematoxylin and eosin, periodic acid Schiff, and immunohistochemical staining was performed, the distribution characteristics of goblet cells, IgA-positive cells, and CD3⁺ lymphocytes were observed. Results showed high columnar epithelial cells in the duodenum and jejunum of Huang-huai white goat and low columnar epithelial cells in the ileum mucosa. Results: Mucopolysaccharides secreted by intestinal goblet cells were mainly neutral, and the number of ileum goblet cells was significantly higher than that of the duodenum and the jejunum (p < 0.05). IgA-positive cells were distributed in the lamina propria of the duodenum, and the number of cells was significantly higher than that in the jejunum and the ileum (p < 0.01). The significant difference was found between the jejunum and the ileum (p < 0.01). The CD3⁺ cells in the intestinal mucosa were distributed in the lamina propria mucosae, and some of the positive cells in the jejunum were distributed between epithelial cells. CD3⁺ cells had the largest number in the jejunal lamina propria but had the lowest number in the ileum. Conclusions: The jejunum was significantly higher than the duodenum (p < 0.05), and the ileum was much less than the jejunum (p < 0.01). (Folia Morphol 2020; 79, 2: 303–310)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

79

Numer

2

Opis fizyczny

p.303-310,fig.,ref.

Twórcy

autor
  • College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
autor
  • College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
autor
  • College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
autor
  • College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
autor
  • College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
autor
  • College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
autor
  • College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China

Bibliografia

  • 1. Brameshuber M, Kellner F, Rossboth B, et al. Monomeric TCR-CD3 Complexes Drive T-Cell Antigen Recognition. Biophys J. 2018; 114(3), doi: 10.1016/j.bpj.2017.11.626.
  • 2. Bukholm IK, Nesland JM, Borresen-Dale AL. Re-expression of E-cadherin, alpha-catenin and beta-catenin, but not of gamma-catenin, in metastatic tissue from breast cancer patients. J Pathol. 2000; 190(1): 15–19, doi: 10.1002/(sici)1096-9896(200001)190:1<15::aidpath489>3.0.co;2-l.
  • 3. Che CY, Yang Q. The distribution of IgA and IgG secreting cells in the gastrointestinal gract of the weaning piglets. Acta Vet Et Zootech Sin. 2010; 38: 96–100.
  • 4. Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001; 73(6): 1131S–1141S, doi: 10.1093/ajcn/73.6.1131S, indexed in Pubmed: 11393191.
  • 5. Duritis I, Mugurevics A. Distribution and characterisation of goblet cells in the large intestine of ostriches during the pre- and post-hatch period. Anat Histol Embryol. 2016; 45(6): 457–462, doi: 10.1111/ahe.12221, indexed in Pubmed: 26680345.
  • 6. Duritis I, Mugurevics A, Mancevica L. Distribution and characterization of the goblet cells in the ostrich small intestine during the pre-and posthatch period. Veterinarija ir Zootechnika. 2013; 63(85): 23–28.
  • 7. Dzharullaeva AS, Tukhvatulin AI, Erokhova AS, et al. Stimulation of dectin-1 and dectin-2 during parenteral immunization, but not mincle, induces secretory IgA in intestinal mucosa. J Immunol Res. 2018; 2018: 3835720, doi: 10.1155/2018/3835720, indexed in Pubmed: 29725603.
  • 8. Fagarasan S, Honjo T. Regulation of IgA synthesis at mucosal surfaces. Curr Opin Immunol. 2004; 16(3): 277–283, doi: 10.1016/j.coi.2004.03.005, indexed in Pubmed: 15134775.
  • 9. Gillett CE, Miles DW, Ryder K, et al. Retention of the expression of E-cadherin and catenins is associated with shorter survival in grade III ductal carcinoma of the breast. J Pathol. 2001; 193(4): 433–441, doi: 10.1002/path.831, indexed in Pubmed: 11276001.
  • 10. Gipson IK. Goblet cells of the conjunctiva: A review of recent findings. Prog Retin Eye Res. 2016; 54: 49–63, doi: 10.1016/j.preteyeres.2016.04.005, indexed in Pubmed: 27091323.
  • 11. Gorrieri G, Scudieri P, Caci E, et al. Goblet cell hyperplasia requires high bicarbonate transport to support mucin release. Sci Rep. 2016; 6: 36016, doi: 10.1038/srep36016, indexed in Pubmed: 27786259.
  • 12. Grootjans J, Hundscheid IHR, Lenaerts K, et al. Ischaemia-induced mucus barrier loss and bacterial penetration are rapidly counteracted by increased goblet cell secretory activity in human and rat colon. Gut. 2013; 62(2): 250–258, doi: 10.1136/gutjnl-2011-301956, indexed in Pubmed: 22637697.
  • 13. Ishinaga H, Kitano M, Toda M, et al. Interleukin-33 induces mucin gene expression and goblet cell hyperplasia in human nasal epithelial cells. Cytokine. 2017; 90: 60–65, doi: 10.1016/j.cyto.2016.10.010, indexed in Pubmed: 27776277.
  • 14. Jung K, Saif LJ. Goblet cell depletion in small intestinal villous and crypt epithelium of conventional nursing and weaned pigs infected with porcine epidemic diarrhea virus. Res Vet Sci. 2017; 110: 12–15, doi: 10.1016/j.rvsc.2016.10.009, indexed in Pubmed: 28159230.
  • 15. Knoop KA, McDonald KG, McCrate S, et al. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 2015; 8(1): 198–210, doi: 10.1038/mi.2014.58, indexed in Pubmed: 25005358.
  • 16. Lan A, Andriamihaja M, Blouin JM, et al. High-protein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon. J Nutr Biochem. 2015; 26(1): 91–98, doi: 10.1016/j.jnutbio.2014.09.007, indexed in Pubmed: 25459886.
  • 17. Liu H, Zhang Y. Preliminary study on distribution and type of goblet cells in digestive tract of Silurus meridionalis. Sichuan J Zoology. 2002; 21: 6–8.
  • 18. Liu Z, Chen X, Wu Q, et al. miR-125b inhibits goblet cell differentiation in allergic airway inflammation by targeting SPDEF. Eur J Pharmacol. 2016; 782: 14–20, doi: 10.1016/j.ejphar.2016.04.044, indexed in Pubmed: 27112664.
  • 19. Machado-Neto R, Pontin M, Nordi WM, et al. Goblet cell mucin distribution in the small intestine of newborn goat kids fed lyophilized bovine colostrum. Livestock Science. 2013; 157(1): 125–131, doi: 10.1016/j.livsci.2013.06.033.
  • 20. Magalhaes JG, Tattoli I, Girardin SE. The intestinal epithelial barrier: how to distinguish between the microbial flora and pathogens. Semin Immunol. 2007; 19(2): 106–115, doi: 10.1016/j.smim.2006.12.006, indexed in Pubmed: 17324587.
  • 21. McCauley HA, Guasch G. Three cheers for the goblet cell: maintaining homeostasis in mucosal epithelia. Trends Mol Med. 2015; 21(8): 492–503, doi: 10.1016/j.molmed.2015.06.003, indexed in Pubmed: 26144290.
  • 22. McCauley HA, Liu CY, Attia AC, et al. TGFb signaling inhibits goblet cell differentiation via SPDEF in conjunctival epithelium. Development. 2014; 141(23): 4628–4639, doi: 10.1242/dev.117804, indexed in Pubmed: 25377551.
  • 23. McDole JR, Wheeler LW, McDonald KG, et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 2012; 483(7389): 345–349, doi: 10.1038/nature10863, indexed in Pubmed: 22422267.
  • 24. Ngoenkam J, Schamel WW, Pongcharoen S. Selected signalling proteins recruited to the T-cell receptor-CD3 complex. Immunology. 2018; 153(1): 42–50, doi: 10.1111/imm.12809, indexed in Pubmed: 28771705.
  • 25. Oeser K, Schwartz C, Voehringer D. Conditional IL-4//IL-13-deficient mice reveal a critical role of innate immune cells for protective immunity against gastrointestinal helminths. Mucosal Immunol. 2015; 8(3): 672–682, doi: 10.1038/mi.2014.101, indexed in Pubmed: 25336167.
  • 26. Shirkey TW, Siggers RH, Goldade BG, et al. Effects of commensal bacteria on intestinal morphology and expression of proinflammatory cytokines in the gnotobiotic pig. Exp Biol Med (Maywood). 2006; 231(8): 1333–1345, doi: 10.1177/153537020623100807, indexed in Pubmed: 16946402.
  • 27. Singh I. The distribution of goblet cells in the human small intestine. Cells Tissues Organs. 1971; 80(1): 68–72, doi: 10.1159/000143675.
  • 28. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009; 27: 591–619, doi: 10.1146/annurev.immunol.021908.132706, indexed in Pubmed: 19132916.
  • 29. Stokes CR, Bailey M. Antigen handling in the gastrointestinal lamina propria. J Biotechnol. 1996; 44(1-3): 5–11, doi: 10.1016/0168-1656(95)00114-X, indexed in Pubmed: 8717380.
  • 30. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009; 71: 241–260, doi: 10.1146/annurev.physiol.010908.163145, indexed in Pubmed: 18808327.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6d3a4266-a4c9-4e6d-a3f0-4e7408ec70ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.