PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 161 | 02 |

Tytuł artykułu

Różnorodność biologiczna i rola bakterii glebowych w środowisku leśnym

Treść / Zawartość

Warianty tytułu

EN
Biodiversity and the role of soil bacteria in a forest environment

Języki publikacji

PL

Abstrakty

EN
Microorganisms commonly inhabit all environments in which they can survive. The number of bacteria in soil depends on its structure, moisture and nutrient content, and ranges from a few hundred to several thousand per gram of soil. Qualitative and quantitative composition of bacteria mainly depends on physico−chemical agents, soil and vegetation cover, the content of biogenic elements, but also on the salinity and pollution. In the case of forest soils number of bacteria amounts to about 4.8×10 9 per 1 cm 3 of soil. In the rhizosphere, the soil directly surrounding plant roots, there are organisms that affect the biochemical activity of plants. The main representatives of bacteria, which are present in the rhizosphere layer, are species of the genera: Pseudomonas and Bacillus, Acidobacteria that protect plants against attack of pathogens. Soil microorganisms form a symbiosis with vascular plants. Because of their properties, they are effective antagonists against fungi that cause plant diseases (leaf spots, roots and shoot apices disease, as well as rot). This group includes such species as: Sclerotinia sclerotiorum, Botrytis cinerea and Colletotrichum gloeosporioides or the species belonging to Oomycetes, for example Phytophthora and Pythium. Bacteria also protect plants against harmful insects and inhibit the growth of fungal diseases. The beneficial role of bacteria is observed in the development of truffles as well. They are responsible for providing nitrogen to the mycelium forming fruiting bodies. Bacteria improve plant growth and protect their host against drought. Understanding the diversity of bacteria that have important role in the functioning of ecosystems, including forest ecosystems, remains a challenge for microbiologists.

Wydawca

-

Czasopismo

Rocznik

Tom

161

Numer

02

Opis fizyczny

s.155-162,bibliogr.

Twórcy

autor
  • Zakład Ochrony Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn
  • Zakład Ekologii Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn

Bibliografia

  • Antony-Babu S., Deveau A., Van Nostrand J. D., Zhou J., Le Tacon F., Robin C., Frey-Klett P., Uroz S. 2014. Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environmental Microbiology 16: 2831-2847.
  • Badura L. 2005. Mikroorganizmy glebowe i ich znaczenie w ekosystemach degradowanych przez człowieka. Inżynieria Ekologiczna 12: 14-15.
  • Badura L. 2006. Rozważania nad rolą mikroorganizmów w glebach. Zeszyty Naukowe Uniwersytetu Przyrodniczego 546: 13-23.
  • Baldrian P., Kolařík M., Štursová M., Kopecký J., Valášková V., Větrovský T., Žifčáková L., Šnajdr J., Rídl J., Vlček C., Voříšková, J. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal 6 (2): 248-258.
  • Barbieri E., Bertini L., Rossi I., Ceccaroli P., Saltarelli R., Guidi C., Zambonelli A., Stocchi V. 2005. New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii. FEMS Microbiology Letters 247: 23-35.
  • Barbieri E., Ceccarolia P., Saltarelli R., Guidia C., Potenza L., Basaglia M., Fontana F., Baldan E., Casella S., Ryahi O., Zambonelli A., Stocchi V. 2010. New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum. Fungal Biology 114: 936-942.
  • Barbieri E., Guidi C., Bertaux J., Frey-Klett P., Garbaye J., Ceccaroli P., Saltarelli R., Zambonelli A., Stocchi V. 2007. Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environmental Microbiology 9: 2234-2246.
  • Bastias B. A., Anderson I. C., Xu Z., Cairney J. W. 2007. RNA-and DNA-based profiling of soil fungal communities in a native Australian eucalypt forest and adjacent Pinus elliotti plantation. Soil Biology and Biochemistry 39 (12): 3108-3114.
  • Benson D. R., Silvester W. B. 1993. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiology Reviews 57: 293-319.
  • Błaszczyk M. K. 2010. Mikrobiologia środowisk. PWN, Warszawa.
  • Bulla L. A., Costilow R. W., Sharpe E. S. 1978. Biology of bacillus popiliae. Adv. Applied Microbiology 23: 1-18.
  • Callot G. 1999. La truffle, la terre, la vie. INRA Editions, Paris.
  • Carvalho F. M., Souza R. C., Barcellos F.G., Hungria M., Vasconcelos A. T. R. 2010. Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales. BMC Microbiology 10 (1).
  • Citterio B., Cardoni P., Potenza L., Amicucci A., Stocchi V., Gola G., Nuti M. 1995. Isolation of bacteria from sporocarps of Tuber magnatum Pico, Tuber borchii Vitt. and Tuber maculatum Vitt. W: Bonfante P., Nuti M., Stocchi V. [red.]. Biotechnology of ectomycorrhizae. Molecular Approaches. Springer US. 241-248.
  • Deveau A., Palin B., Delaruelle C., Peter M., Kohler A., Pierrat J. C., Sarniguet A., Garbaye J., Martin F., Frey-Klett P. 2007. The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytologist 175 (4): 743-755.
  • Fiedler H. P., Zahner H. 2001. Screening for new secondary metabolites from microorganisms. W: Braun V., Götz F. [red.]. Microbial Fundamentals of Biotechnology. Wiley-VCH Verlag. 16-51.
  • Fierer N., Bradford M. A., Jackson R. R. 2007. Toward an ecological classification of soil bacteria. Ecology 88: 1354-1364.
  • Foster K. R. 1988. Microenvironments of soil microorganisms. Biology and Fertility of Soils 6: 189-203.
  • Frąc M., Jezierska-Tys S. 2010. Różnorodność mikroorganizmów środowiska glebowego. Postępy Mikrobiologii 49 (1): 47-58.
  • Galus-Barchan A., Pasmionka I. 2014. Występowanie wybranych mikroorganizmów w glebie na obszarze Puszczy Niepołomickiej ze szczególnym uwzględnieniem grzybów pleśniowych. Polish Journal of Agronomy 17.
  • Garbaye J. 1994. Tansley review no.76 helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytologist 128 (2): 197-210.
  • Garbaye J., Churin J. L., Duponnois R. 1992. Effects of substrate sterilization, fungicide treatment, and mycorrhization helper bacteria on ectomycorrhizal formation of pedunculate oak (Quercus robur) inoculated with Laccaria laccata in two peat bare-root nurseries. Biology and Fertility of Soils 13 (1): 55-57.
  • Ipsilantis I., Sylvia D. M. 2007. Interactions of assemblages of mycorrhizal fungi with two Florida wetland plants. Applied Soil Ecology 35 (2): 261-271.
  • Jankiewicz U. 2009. Charakterystyka i znaczenie piowerdyn bakterii z rodzaju Pseudomonas. Postępy Mikrobiologii 48 (4): 243-254.
  • Kozdrój J. 2013. Metagenom źródło nowej informacji o mikroorganizmach glebowych. Postępy Mikrobiologii 52 (2).
  • Krivtsov V., Bellinger E. G., Sigee D. 2005. Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion. Aquatic Ecology 39 (2): 123-134.
  • Lu W., Zhang W., Bai Y., Fu Y., Chen J., Geng X., Wang Y., Xiao M. 2010. A genetically engineered Pseudomonas fluorescens strain possesses the dual activity against phytopathogenic fungi and insects. Journal Microbiology and Biotechnology 20 (2): 281-6.
  • Mello A., Murat C., Bonfante P. 2006. Truffles: much more than a prized and local fungal delicacy. FEMS Microbiology Letters 260: 1-8.
  • Myśków W., Stachyra A., Zięba, S., Masiak D. 1996. Aktywność biologiczna gleby jako wskaźnik jej żyzności i uro-dzajności. Rocz. Glebozn. 47 (1): 2.
  • Olivier J., Savignac, J., Sourzat, P. 2012. Truffe et Trufficulture. Périgueux, France: FANLAC.
  • Padmanabhan V., Prabakaran G., Paily K. P., Balaraman K. 2005. Toxicity of a mosquitocidal metabolite of Pseudomonas fluorescens on larvae & pupae of the house fly, Musca domestica. Indian Journal of Medical Research 121 (2): 116-119.
  • Read D. J. 199. Mycorrhizas in ecosystems. Experientia 47: 376-391.
  • Rivera C. S., Blanco D., Oria R., Venturini M. E. 2010. Diversity of culturable microorganisms and occurrence of Listeria monocytogenes and Salmonella spp. in Tuber aestivum and Tuber melanosporum ascocarps. Food Microbiology 27 (2): 286-293. DOI: 10.1016/j.fm.2009.11.001.
  • da Rocha U. N., Van Overbeek L., Van Elsas J. D. 2009. Exploration of hitherto-uncultured bacteria from the rhizosphere. FEMS Microbiology Ecology 69 (3): 313-328.
  • Rösch Ch., Mergel A., Bothe H. 2002. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Applied and Environmental Microbiology 68 (8): 3818-3829.
  • Saltarelli R., Ceccaroli P., Cesari P., Barbieri E., Stocchi V. 2008. Effect of storage on biochemical and microbiological parameters of edible truffle species. Food Chemistry 109 (1): 8-16.
  • Sbrana C., Agnolucci M., Bedini S., Lepera A., Toffanin A., Giovannetti M., Nuti M. P. 2002. Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth. FEMS Microbiology Letters 211 (2): 195-201.
  • Schulze J., Pöschel G. 2004. Bacterial inoculation of maize affects carbon allocation to roots and carbon turnover in the rhizosphere. Plant and Soil 267 (1-2): 235-241.
  • Sierpińska A., Grodzki W. 2012. Badania nad wykorzystaniem Bacillus thuringiensis i entomopatogenicznych grzybów w ochronie lasu. W: Skrzecz I., Sierpińska A. [red.]. Kierunki rozwoju patologii owadów w Polsce. Wydawnictwa IBL, Sękocin Stary. 144-155.
  • Spencer M., Ryu C. M., Yang K. Y., Kim Y. C., Kloepper J. W., Anderson A. J. 2003. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiological and Molecular Plant Pathology 63 (1): 27-34.
  • Splittstoesser C. M., Kawanishi C. Y., Tashiro H. 1978. Infection of the European chafer Amphimallon majalis by Bacillus popilliae: Light and electron microscope observations. Journal of Invertebrate Pathology 3: 84-90.
  • Splivallo R., Deveau A., Valdez N., Kirchhoff N., Frey-Klett P., Karlovsky P. 2014. Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environmental Microbiology. DOI: 10.1111/1462-2920.12521.
  • Solecka J., Ziemska J., Rajnisz A., Laskowska A., Guśpiel A. 2012. Promieniowce – występowanie i wytwa-rzanie związków biologicznie czynnych. Postępy Mikrobiologii 52 (1): 83-91.
  • Stevenson L. G., Drake S. K., Murray P. R. 2010. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology 48 (2): 444-447.
  • Torsvik V., Ovreas L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology 5 (3): 240-245.
  • Whipps J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany 52: 487--511.
  • Wojda I., Taszłow P. 2013. Heat shock affects host-pathogen interaction in Galleria mellonella infected with Bacillus thuringiensis. Journal of Insect Physiology 59 (9): 894-905.
  • Wolińska A. 2010. Aktywność dehydrogenazowa mikroorganizmów glebowych i dostępność tlenu w procesie reoksydacji wybranych mineralnych gleb Polski. Acta Agrophysica. Rozprawy i Monografie 3.
  • Wurst S., Wagenaar R., Biere A., Van der Putten W. H. 2010. Microorganisms and nematodes increase levels of secondary metabolites in roots and root exudates of Plantago lanceolata. Plant and Soil 329 (1-2): 117-126.
  • Zwoliński J. 2005. Oznaczanie udziału grzybów i bakterii w biomasie drobnoustrojów gleb leśnych. Leś. Pr. Bad. 4: 7-18.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6cba9996-5d8e-4082-b930-fa3311d13290
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.