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Abstract
The Microorganism Detection System (SDM) is a new solution using artificial intelligence, unique on the international scale, 
to correctly identify and count microorganisms, with particular emphasis on specificlisted microorganisms (Document of 
Standard PN-EN ISO 17516–2014:11) – Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. 
SDM enables the use of algorithms for microscopic image interpretation in the microbiological assessment of the cosmetics 
in accordance with the standard, providing an answer to whether the tested product complies with the standard. Apart from 
the software part of SDM, an integral part of the system is an innovative methodology for preparing a cosmetic sample for 
testing. The experiments confirm the high sensitivity and specificity of the SDM method, its repeatability and, above all, 
the comparability of the results with the methods of European standards.
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INTRODUCTION

General purpose of the SDM. The presented Microorganism 
Detection System (SDM) is an internationally unique use of 
the artificial intelligence (AI) to optimize the microbiological 
control process of cosmetics with the use of algorithms for 
microscopic image interpretation.

The general idea of SDM is to make correct identification 
and counting of microorganisms, with particular emphasis 
on specific listed microorganisms (Document of Standards 
PN-EN ISO 17516-2014:11) – Candida albicans, Escherichia 
coli, Pseudomonas aeruginosa, and Staphylococcus aureus) [1]. 
This standard defines the acceptable levels of microbiological 
contamination in accordance with the category of the 
cosmetic. Since July 2013, Regulation (EC) No. 1223/2009 of 
the European Parliament and of the Council of 30 November 
2009 on cosmetic products [2], has been in force, which 
imposes an obligation to test the microbiological purity of 
cosmetic produce to ensure the safety of consumers.

METHOD AND RESULTS

Methodology of preparing a cosmetic sample. An integral 
part of the presented SDM is the methodology of preparing a 
cosmetic sample for testing. The methodology covers the steps 
from taking a cosmetic sample to obtaining separated live 
microorganisms through staining and taking pictures, which 

in the final stage are analyzed by the artificial intelligence 
of the SDM.

The research team of the Institute of Rural Health tested 
numerous variants of the methods [3–5] based mainly 
on the concentration methods: flotation, sedimentation, 
concentration gradient centrifugation and filtration (on 
filters with a pore size of 0.2  µm) for the separation of 
living microorganisms. The final, validated methodology 
for the preparation of cosmetic samples is a modification 
of the different above-mentioned methods [3, 4]. Live 
microorganism cells obtained in the previous stage were 
filtered and then stained in the next stages.

The researchers then looked for a method of comprehensive 
staining, so that bacteria, yeasts and moulds could be 
assessed simultaneously in one microscopic preparation. 
After carrying out numerous tests, the focus was on Gram 
staining and modifications [6–8]. Next, numerous photos 
of the microscope preparations stained with Gram staining 
modifications were sent to a Consortium member – NVT for 
the development of SDM software and artificial intelligence 
learning to recognize specific microbial species.

Software part of SDM. This consists of 3 stages: detection 
of individual microorganisms (cells), classification of the 
detected microorganisms, and processing of the results into 
the final form in terms of compliance with the document 
of the standard ISO. SDM architecture schema is showed 
in Fig. 1.

Data description. The study used data consisting of 
5 sets of images. Each set contains 5 images taken of 19 
microorganisms (within 4 specific microorganisms). In other 
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words, 25 images were made of each of the microorganisms; 
the sum of all imageswais 25 * 19 = 475. Each image was taken 
at the resolution: 3088 × 2076 pixels.

Cell detection. For the cell detection step (the first step of 
the described process), an algorithm based on the U-net 
deep neural network [9] and the Watershed method [10] 
was developed. As a result of this algorithm, the contours of 
individual cells were obtained, which were then transformed 
into bounding boxes. In fact, cells marked in this way (by 
bounding boxes) are cut out of the image and saved as an 
independent image (detected cells of microorganisms). 
However, in order for the whole process to work in its final 
form, it must first be trained.

Data for training cell detection method. On N random-
selected images (from 2–10 depending on the number of 
visible cells) of each microorganism, manual cell segmentation 
was performed with QuPath [11]. The results of manual 
segmentation were then saved in the resulting form (JSON), 
and the original images cut into small parts, each with a size 
of 304 × 304 pixels; the size inspired by YOLO v3 [12] where 
the images are 4 times bigger: 608 × 608 pixels. For each 
cropped image, a mask file was created with the selection 
of individual cells (the area of a single cell consists of pixels 
with the same value).

Training and testing. The data prepared in the manner 
described above was split into independent training and 
testing sets with 1,816 and 455 pairs of images (photo + 
mask), respectively.

The cell detection algorithm was trained for 200 epochs 
and the input data pre-normalized. The deep neural network 
(DNN) during training was assessed with different metrics, 
but due to the specificity of the task (segmentation) and 

the importance of the assessment, it was decided to use the 
Intersection over Union (IOU) metric, which takes values in 
the range <0, 1> (the closer to 1 the better).

The entire training was repeated 10 times, and the average 
results of IOU were equal to 0.7713 for the training set and 
0.7134 for the testing set.

Although according to the statistics of the learning results, 
the segmentation results could be much more accurate, it was 
decided that this was not necessary because the segmentation 
results were to be transformed into a bounding boxes 
determined by the coordinates of the extreme points of the 
segmented cells.

Cell classification. For the microorganisms cell classification 
step (the second step of described process), a deep 
convolutional neural network (CNN) based on Xception 
net [13] was developed. As a result of the operation of this 
network, individual images of microorganisms cells were 
assigned to one of the classes of analyzed microorganisms. 
The input size of the image in the modified Xception model 
was limited to the smallest possible size of 71 × 71 pixels. 
In fact, this size is still much larger than the size of the 
detected (segmented) microorganisms as the average size for 
the largest cells (Candida dubliniensis) was 91 × 93 pixels, and 
for the smallest cells (Streptococcus agalactiae) – 16 × 16 pixels.

The Xception network mostly consists of blocks of layers: 
convolution (looking for features in the image), batch 
normalization (preventing model overfitting), activation 
(adding non-linearity to the calculations). The input size 
of the DNN had a particular effect on the final result of 
classification, as the successive layers of the network were 
becoming smaller and smaller, with the result that some 
information may be lost, and thus the classification may 
not be exact. With the selected input size of DNN (71 × 71), 
the last block of layers was only 3 × 3 pixels, which made it 

Figure 1. SDM architecture schema.
Left part: a set of selected input data (images); centre upper part: semantic segmentation (cells and background); centre bottom part: instance segmentation (each cell 
has its own color). Right part: classification of segmented cells (bounding boxes) and presentation of the final results (in bottom frame)
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very difficult for the network to correctly classify cells. To 
improve the results, the last layers were modified by reducing 
the number of considered network parameters (2 blocks of 
layers: dropout and batch normalization).

Data to train DNN for cell classification. Images described 
in paragraph II were used again, but this time as data for the 
classifying network. For each of the 19 microorganisms, 20 
(19 × 20 = 380) images were selected and the cell detection 
process described in paragraph II was performed on each 
one of them. Results of detection were saved as single images 
(one image per cell) in 19 directories. Additionally, an extra 
(twentieth) class was created for outliers microorganisms, 
which with their size (too small or too large) were significantly 
different as incorrectly marked microorganisms in the image. 
In this way, 20 classes were created for the image classification 
CNN. Among these 20 classes there were 4 classes of specific 
microorganisms (Candida albicans, Escherichia coli, 
Pseudomonas aeruginosa, Staphylococcus aureus).

The sum of cells of some microorganisms were much bigger 
than others, thus a common upper sum limit was adopted, 
and in this way 2,000 images of detected cells were randomly 
selected for each of the 20 classes. The only exception was 
the Candida tropicalis class, for which only 968 cells were 
collected as single images.

Training and testing of classification. The CNN training 
process was performed in accordance with the generally 
applicable principles in deep learning [14–16]. The data set 
was divided in the proportion of 7:3 into a training set and 
the validation set.

In order to improve the learning process and prevent 
overfitting of the model, a data augmentation mechanism 
(zoom, rotation, horizontal and vertical flipping), selected 
experimentally by trial and error, was implemented.

Learning the CNN took 200 epochs, with a batch size equal 
to 32, learning rate equal 0.0001, Adam as the optimization 
method, and categorical cross-entropy as the loss function. 
The categorical accuracy metric was used to assess the 
effectiveness of the learning process.

After the training process, the trained weights of the CNN 
model was tested on a data set independent of the training 
set, and the result summarized in a confusion matrix (Fig. 2), 
and the Receiver Operating Characteristic (ROC) [17] curve 
(Fig.  3) for multi-class variant was plotted (the closer to 
the upper left corner, the more accurate the results of the 
classification; the closer to the y = x curve, the more randomly 
the classifier behaves).

It is worth noting that the proposed computational 
methodology, as well as the exact methodology of sample 
preparation and staining, together with the software of the 
MDS, form mutually dependent parts and are provided only 
to cosmetic companies cooperating with the Consortium.

The trained CNN, for the test data, obtained an average 
accuracy of 80%, but a more detailed analysis of the confusion 
matrix showed that for some microorganisms the obtained 
results were much higher (Candida cells: over 95% accuracy) 
or lower (Proteus vulgaris cells: 59% accuracy).

From the point of view of the SDM, the most important 
point was to recognize specific microorganisms: Candida 
albicans – 97% accuracy, Escherichia coli – 76% accuracy, 
Pseudomonas aeruginosa – 70% accuracy, and Staphylococcus 
aureus – 85% accuracy.
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