PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 70 | 11 |

Tytuł artykułu

Effect of formic acid and heat treatment on Clostridium sporogenes spores inactivation in animal by-products

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to investigate the effect of acidification and heat on the survival of Clostridium spores in third category animal by-products. Poultry minced meat and minced fish waste, contaminated with Clostridium sporogenes IW 1306 spore suspension, were subjected to the combined action of formic acid and high temperature of different values. To assess the efficiency of examined hygienization method, the spore number in biomass samples after acidification and heat treatment was estimated. For this purpose a 10-fold dilution series in peptone water was prepared and heat-treated at 80°C for 10 min. After cooling-down, one milliliter of each dilution was pour-plated onto DRCM medium solidified with agar. Statistical analyses were performed using the Statistica software. The results of the microbiological analysis show that lowering the pH to about 4 results in increasing the sensitivity of Clostridium sporogenes spores to a high – but not exceeding 100°C – temperature. The fastest inactivation of spores occurred after heating the acidified biomass at a temperature of 90°C. In the case of meat the 48-hour exposure to formic acid allowed the thermal inactivation of the spores within 15 minutes. The investigated method of hygienization may guarantee not only the inhibition of spores germination, but also enables their total elimination, reducing the epidemiological risk related to animal by-products handling.

Wydawca

-

Rocznik

Tom

70

Numer

11

Opis fizyczny

p.684-688,fig.,ref.

Twórcy

  • Department of Microbiology and Food Technology, University of Technology and Life Sciences in Bydgoszcz, Bernardynska 6, 85-029 Bydgoszcz, Poland
autor
  • Department of Microbiology and Food Technology, University of Technology and Life Sciences in Bydgoszcz, Bernardynska 6, 85-029 Bydgoszcz, Poland
  • Department of Microbiology and Food Technology, University of Technology and Life Sciences in Bydgoszcz, Bernardynska 6, 85-029 Bydgoszcz, Poland

Bibliografia

  • 1. Bauza-Kaszewska J., Paluszak Z.: Wpływ zróżnicowanych dawek wysokoreaktywnego tlenku wapna na przeżywalność pałeczek Salmonella w odpadach mięsnych. Przemysł Chemiczny 2012, 91 (5), 680-683.
  • 2. Breidt F. Jr, Hayes J. S., Osborne J. A., Mc Feeters R. F.: Determination of 5-Log Pathogen Reduction Times for Heat-Processed, Acidified Vegetable Brines. J. Food Protect. 2005, 68, 305-310.
  • 3. Brown K. L.: Control of bacterial spores. Br. Med. Bull. 2000, 56, 158-171.
  • 4. Brown J. L., Tran-Dinh N., Chapman B.: Clostridium sporogenes PA 3679 and its uses in the derivation of thermal processing schedules for low-acid shelfstable foods and as a research model for proteolytic Clostridium botulinum. J. Food Protect. 2012, 75, 779-792.
  • 5. Byun B. Y., Liu Y., Juming Tang J., Kang D.-H., Cho H.-Y., Hwang H.-Y., Mah J.-H.: Optimization and Evaluation of Heat-shock Condition for Spore Enumeration Being Used in Thermal-process Verification: Differential Responses of Spores and Vegetative Cells of Clostridium sporogenes to Heat Shock. Food Sci. Biotechnol. 2011, 20, 751-757.
  • 6. Cai T., Pancorbo O. C., Merka W. C., Sander J. E., Barnhart H. M.: Stabilization of poultry processing by-products and poultry carcasses through direct chemical acidification. Bioresour. Technol. 1995, 52, 69-77.
  • 7. Commission Regulation (EC) No 142/2011 of 25 February 2011 implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council laying down health rules as regards animal by-products and derived products not intended for human consumption and implementing Council Directive 97/78/EC as regards certain samples and items exempt from veterinary checks at the border under that Directive.
  • 8. Commission Regulation (EC) No 808/2003 of 12 May 2003 amending Regulation (EC) No 1774/2002 of the European Parliament and of the Council laying down health rules concerning animal by-products not intended for human consumption.
  • 9. Cui H., Gabriel A. A., Nakano H.: Heat-sensitizing effects of plant extracts on Clostridium spp. spores. Food Control 2011, 22, 99-104.
  • 10. Derossi A., Fiore A. G., De Pilli T., Severini C.: A review on acidifying treatments for vegetable canned food. Crit. Rev. Food Sci. Nutr. 2011, 51, 955-964.
  • 11. Flythe M. D., Russell J. B.: The effect of pH and a bacteriocin (bovicin HC5) on Clostridium sporogenes MD1, a bacterium that has the ability to degrade amino acids in ensiled plant materials. FEMS Microbiol. Ecol. 2004, 47, 215-222.
  • 12. Gram L., Huss H. H.: Microbiological spoilage of fish and fish products. Int. J. Food Microbiol. 1996, 33, 121-137.
  • 13. Houben J. H.: A survey of dry-salted natural casings for the presence of Salmonella spp., Listeria monocytogenes and sulphite-reducing Clostridium spores. Food Microbiol. 2005, 22, 221-225.
  • 14. Juneja V. K., Baker D. A., Thippareddi H., Snyder O. P. Jr, Mohr T. B.: Growth potential of Clostridium perfringens from spores in acidified beef, pork, and poultry products during chilling. J. Food Protect. 2013, 76, 65-71.
  • 15. Lorenzo B. F., O’Kiely P.: Alternatives to formic acid as a grass silage additive under two contrasting ensilability conditions. Irish J. Agric. Food Res. 2008, 47, 135-149.
  • 16. Mani-López E., García H. S., López-Malo A.: Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 2012, 45, 713-721.
  • 17. Naim F., Zareifard M. R., Zhu S., Huizing R. H., Grabowski S., Marcotte M.: Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrotalginate particles: from kinetics to process validation. Food Microbiol. 2008, 25, 936-941.
  • 18. Paluszak Z., Bauza-Kaszewska J., Skowron K.: Effect of animal by-products composting process on the inactivation of indicator bacteria. Bull. Vet. Inst. Pulawy 2011, 55, 45-49.
  • 19. Polonen I., Toivonen V., Makela J.: Different combinations of formic, propionic and benzoic acids in slaughter offal preservation for feeding to fur animals. Anim. Feed Sci. Technol. 1998, 71, 197-202.
  • 20. Ramasubburayan R., Iyapparaj P., Subhashini K. J., Chandran M. N., Palavesam A., Immanuel G.: Characterization and Nutritional Quality of Formic Acid Silage Developed from Marine Fishery Waste and their Potential Utilization as Feed Stuff for Common Carp Cyprinus carpio Fingerlings. Turkish J. Fish. Aquat. Sci. 2013, 13, 281-289.
  • 21. Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 laying down health rules as regards animal by-products and derived products not intended for human consumption and repealing Regulation (EC) No 1774/2002 (Animal by-products Regulation).
  • 22. Ross A. I. V., Griffiths M. W., Mittal G. S., Deeth H. C.: Combining nonthermal technologies to control foodborne microorganisms. Int. J. Food Microbiol. 2003, 89, 125-138.
  • 23. Spångberg J., Hansson P.-A., Tidåker P., Jönsson H.: Environmental impact of meat meal fertilizer vs. chemical fertilizer. Resour., Conserv.&Recycling 2011, 55, 1078-1086.
  • 24. Vinnerås B., Samuelson A., Emmoth E., Nyberg K. A., Albihn A.: Biosecurity aspects and pathogen inactivation in acidified high risk animal by-products. J. Environment. Sci. Health, Part A: Toxic/Hazardous Substances and Environmental Engineering 2012, 47, 1166-1172.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6aeaf486-378e-4fdb-8ff1-cba5c7a4c5fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.