PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 23 |

Tytuł artykułu

Platelet-derived growth factor-C functions as a growth factor in mouse embryonic stem cells and human fibrosarcoma cells

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Platelet-derived growth factor-C (PDGF-C) has been shown to be involved in several biological processes, such as embryonic development, wound healing and angiogenesis, as well as in diseases including tumor formation and fibrotic diseases. However, its role in fibrosarcoma and embryonic stem (ES) cells has not been elucidated. Methods: The expression level of PDGF-C was measured using RT-PCR. The activity of PDGF-C was suppressed using RNA interference or a neutralizing antibody and the effect on cell growth was examined using the WST and soft agar assays. Results: In the tumor cell lines studied, the highest level of PDGF-C expression was in human HT1080 fibrosarcoma cells. In ES cells, it was highly expressed in the self-renewal state but not in the differentiated state. PDGF-C knockdown suppressed anchoragedependent and -independent growth of HT1080 and ES cells. In addition, the suppression of PDGF-C activity by a neutralizing antibody retarded ES cell growth. Conclusion: Our results suggest that PDGF-C plays an important role in the proliferation of fibrosarcoma and ES cells.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Opis fizyczny

p.1-11,fig.,ref.

Twórcy

autor
  • Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
  • Laboratory of Molecular and Biochemical Research, Research Support Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
autor
  • Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
  • Laboratory of Molecular and Biochemical Research, Research Support Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
autor
  • Laboratory of Molecular and Biochemical Research, Research Support Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
autor
  • Laboratory of Molecular and Biochemical Research, Research Support Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
autor
  • Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
autor
  • Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
  • Laboratory of Molecular and Biochemical Research, Research Support Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
autor
  • Laboratory of Molecular and Biochemical Research, Research Support Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan

Bibliografia

  • 1. Niwa H. How is pluripotency determined and maintained? Development. 2007;134:635–46.
  • 2. Koide H. Embryonic stem cells and oncogenes. In: Atwood CS, Meethal SV, editors. Pluripotent stem cell biology - advances in mechanisms, methods and models. Rijeka: InTech; 2014. p. 41–61.
  • 3. Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 1998;12:2048–60.
  • 4. Matsuda T, Nakamura T, Nakao K, Arai T, Katsuki M, Heike T, Yokota T. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. 1999;18:4261–9.
  • 5. Hao J, Li TG, Qi X, Zhao DF, Zhao GQ. WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Dev Biol. 2006;290:81–91.
  • 6. Ogawa K, Nishinakamura R, Iwamatsu Y, Shimosato D, Niwa H. Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem Biophys Res Commun. 2006;343:159–66.
  • 7. Singla DK, Schneider DJ, LeWinter MM, Sobel BE. Wnt3a but not wnt11 supports self-renewal of embryonic stem cells. Biochem Biophys Res Commun. 2006;345:789–95.
  • 8. Takao Y, Yokota T, Koide H. β-catenin up-regulates Nanog expression through interaction with Oct-3/4 in embryonic stem cells. Biochem Biophys Res Commun. 2007;353:699–705.
  • 9. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40:499–507.
  • 10. Akagi T, Usuda M, Matsuda T, Ko MSH, Niwa H, Asano M, Koide H, Yokota T. Identification of Zfp-57 as a downstream molecule of STAT3 and Oct-3/4 in embryonic stem cells. Biochem Biophys Res Commun. 2005;331:23–30.
  • 11. Kinoshita K, Ura H, Akagi T, Usuda M, Koide H, Yokota T. GABPα regulates Oct-3/4 expression in mouse embryonic stem cells. Biochem Biophys Res Commun. 2007;353:686–91.
  • 12. Ura H, Usuda M, Kinoshita K, Sun C, Mori K, Akagi T, Matsuda T, Koide H, Yokota T. STAT3 and Oct-3/4 control histone modification through induction of Eed in embryonic stem cells. J Biol Chem. 2008;283:9713–23.
  • 13. Sun C, Nakatake Y, Ura H, Akagi T, Niwa H, Koide H, Yokota T. Stem cell-specific expression of Dax1 is conferred by STAT3 and Oct3/4 in embryonic stem cells. Biochem Biophys Res Commun. 2008;372:91–6.
  • 14. Miura M, Ueda A, Takao Y, Nishimura EK, Koide H, Yokota T. A stem cell-derived gene (Sddr) negatively regulates differentiation of embryonic stem cells. Int J Dev Biol. 2010;54:33–9.
  • 15. Fujii Y, Kakegawa M, Koide H, Akagi T, Yokota T. Zfp296 is a novel Klf4-interacting protein and functions as a negative regulator. Biochem Biophys Res Commun. 2013;441:411–7.
  • 16. Kanai D, Ueda A, Akagi T, Yokota T, Koide H. Oct3/4 directly regulates expression of E2F3a in mouse embryonic stem cells. Biochem Biophys Res Commun. 2015;459:374–8.
  • 17. Tada Y, Yamaguchi Y, Kinjo T, Song X, Akagi T, Takamura H, Ohta T, Yokota T, Koide H. The stem cell transcription factor ZFP57 induces IGF2 expression to promote anchorage-independent growth in cancer cells. Oncogene. 2015;34:752–60.
  • 18. Lei H, Kazlauskas A. Focus on molecules: platelet-derived growth factor C, PDGF-C. Exp Eye Res. 2008;86:711–2.
  • 19. Li X, Pontén A, Aase K, Karlsson L, Abramsson A, Uutela M, Bäckström G, Hellström M, Boström H, Li H, Soriano P, Betsholtz C, Heldin C-H, Alitalo K, Östman A, Eriksson U. PDGF-C is a new protease-activated ligand for the PDGF α-receptor. Nat Cell Biol. 2000;2:302–9.
  • 20. Li X, Eriksson U. Novel PDGF family members: PDGF-C and PDGF-D. Cytokine Growth Factor Rev. 2003;14:91–8.
  • 21. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22:1276–312.
  • 22. Fredriksson L, Li H, Fieber C, Li X, Eriksson U. Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO J. 2004;23:3793–802.
  • 23. Zwerner JP, May WA. PDGF-C is an EWS/FLI induced transforming growth factor in Ewing family tumors. Oncogene. 2001;20:626–33.
  • 24. Zwerner JP, May WA. Dominant negative PDGF-C inhibits growth of Ewing family tumor cell lines. Oncogene. 2002;21:3847–54.
  • 25. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or selfrenewal of ES cells. Nat Genet. 2000;24:372–6.
  • 26. Uranishi K, Akagi T, Sun C, Koide H, Yokota T. Dax1 associates with Esrrb and regulates its function in embryonic stem cells. Mol Cell Biol. 2013;33:2056–66.
  • 27. Yoshida-Koide U, Matsuda T, Saikawa K, Nakanuma Y, Yokota T, Asashima M, Koide H. Involvement of Ras in extraembryonic endoderm differentiation of embryonic stem cells. Biochem Biophys Res Commun. 2004;313:475–81.
  • 28. Gupta S, Stuffrein S, Plattner R, Tencati M, Gray C, Whang YE, Stanbridge EJ. Role of phosphoinositide 3-kinase in the aggressive tumor growth of HT1080 human fibrosarcoma cells. Mol Cell Biol. 2001;21:5846–56.
  • 29. Yamaguchi Y, Takamura H, Tada Y, Akagi T, Oyama K, Miyashita T, Tajima H, Kitagawa H, Fushida S, Yokota T, Ohta T, Koide H. Nanog positively regulates Zfp57 expression in mouse embryonic stem cells. Biochem Biophys Res Commun. 2014;453:817–20.
  • 30. Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol. 2001;17:435–62.
  • 31. Yamauchi S, Iida S, Ishiguro M, Ishikawa T, Uetake H, Sugihara K. Clinical significance of platelet-derived growth factor-C expression in colorectal cancer. J Cancer Therapy. 2014;5:11–20.
  • 32. Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res. 2002;62:3729–35.
  • 33. Ehnman M, Missiaglia E, Folestad E, Selfe J, Strell C, Thway K, Brodin B, Pietras K, Shipley J, Östman A, Eriksson U. Distinct effects of ligand-induced PDGFRα and PDGFRβ signaling in the human rhabdomyosarcoma tumor cell and stroma cell compartments. Cancer Res. 2013;73:2139–49.
  • 34. Hurst NJ Jr, Najy AJ, Ustach CV, Movilla L, Kim H-RC. Platelet-derived growth factor-C (PDGF-C) activation by serine proteases: implications for breast cancer progression. Biochem J. 2012;441:909–18.
  • 35. Choi KS, Fogg DK, Yoon CS, Waisman DM. p11 regulates extracellular plasmin production and invasiveness of HT1080 fibrosarcoma cells. FASEB J. 2003;17:235–46.
  • 36. Hadadeh O, Barruet E, Peiretti F, Verdier M, Bernot D, Hadjal Y, Yazidi CE, Robaglia-Schlupp A, De Paula AM, Nègre D, Iacovino M, Kyba M, Alessi MC, Binétruy B. The plasminogen activation system modulates differently adipogenesis and myogenesis of embryonic stem cells. PLoS One. 2012;7:e49065.
  • 37. Gupta S, Plattner R, Der CJ, Stanbridge EJ. Dissection of ras-dependent signaling pathways controlling aggressive tumor growth of human fibrosarcoma cells: evidence for a potential novel pathway. Mol Cell Biol. 2000;20:9294–306.
  • 38. Burdon T, Stracey C, Chambers I, Nichols J, Smith A. Suppression of SHP-2 and ERK signalling promotes selfrenewal of mouse embryonic stem cells. Dev Biol. 1999;210:30–43.
  • 39. Watanabe S, Umehara H, Murayama K, Okabe M, Kimura T, Nakano T. Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene. 2006;25:2697–707.
  • 40. Kovalenko M, Gazit A, Böhmer A, Rorsman C, Rönnstrand L, Heldin CH, Waltenberger J, Böhmer FD, Levitzki A. Selective platelet-derived growth factor receptor kinase blockers reverse sis-transformation. Cancer Res. 1994;54:6106–14.
  • 41. Pazzaglia L, Novello C, Conti A, Pollino S, Picci P, Benassi MS. miR-152 down-regulation is associated with MET up-regulation in leiomyosarcoma and undifferentiated pleomorphic sarcoma. Cell Oncol. 2017;40:77–88.
  • 42. Bashamboo A, Taylor AH, Samuel K, Panthier JJ, Whetton AD, Forrester LM. The survival of differentiating embryonic stem cells is dependent on the SCF-KIT pathway. J Cell Sci. 2006;119:3039–46.
  • 43. Heo JS, Lee MY, Han HJ. Sonic hedgehog stimulates mouse embryonic stem cell proliferation by cooperation of Ca2 + /protein kinase C and epidermal growth factor receptor as well as Gli1 activation. Stem Cells. 2007;25:3069–80.
  • 44. Ueda A. Involvement of Gli proteins in undifferentiated state maintenance and proliferation of embryonic stem cells. J Juzen Med Soc. 2012;121:38–46.
  • 45. Ogawa K, Matsui H, Ohtsuka S, Niwa H. A novel mechanism for regulating clonal propagation of mouse ES cells. Genes Cells. 2004;9:471–7.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-687fa146-0857-4abc-a019-1b0fc8990617
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.