PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 06 |

Tytuł artykułu

Exogenous application of gibberellic acid and ascorbic acid improved tolerance of okra seedlings to NaCl stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Accumulation of salts in soils has become a serious environmental threat for plant growth and causes considerable loss in yield. Okra Abelmoschus esculentus L. is an important crop and sensitive to saline stress. In the present study, to explore methods for growing okra in salty area, exogenous gibberellic acid (GA₃) and ascorbic acid (AsA) were foliage applied on okra seedling under NaCl stress. The results showed that treatment with 100 mM NaCl decreased shoot length, root length, fresh weight, dry weight, contents of chlorophyll pigments and nutrient elements, enhanced levels of electrolyte leakage, H₂O₂, lipid peroxidation and activities of antioxidant enzymes. Treatments with 0.1 mM GA₃ and/or 0.1 mM AsA could alleviated harmful effects of saline stress on okra seedlings by improving growth indicators, increasing contents of chlorophyll and carotenoids, stimulating activities of antioxidant enzymes and decreasing electrolyte leakage, H₂O₂ content and lipid peroxidation. Moreover, concentrations of K, Ca, Mg and Fe in leaves and roots as well as levels of osmo-protectants (proline and soluble protein) increased in response to treatment with GA₃ + AsA in NaCl-stressed okra seedling. Overall, foliar application of GA₃ and/or AsA demonstrated benefits to okra seedlings in salty environments. Combined application of GA₃ and AsA was more effective than sole use of GA₃ or AsA alone.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

06

Opis fizyczny

Article 93 [10p.], fig.,ref.

Twórcy

autor
  • Institute of Agricultural Sciences of Jiangsu Coastal Area, Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, China
autor
  • Shenzhen GenProMetab Biotechnology Company Limited, Shenzhen, China
autor
  • Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
autor
  • Institute of Agricultural Sciences of Jiangsu Coastal Area, Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, China
autor
  • Institute of Agricultural Sciences of Jiangsu Coastal Area, Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, China
autor
  • Institute of Agricultural Sciences of Jiangsu Coastal Area, Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, China
autor
  • Institute of Agricultural Sciences of Jiangsu Coastal Area, Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, China

Bibliografia

  • Ahmad I, Basra SMA, Afzal I, Farooq M, Wahid A (2013) Growth improvement in spring maize through exogenous application of ascorbic acid, salicylic acid and hydrogen peroxide. Int J Agric Biol 15:95–100
  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:1–17. https://doi.org/10.3389/fpls.2017.00613
  • Ali B, Huang CR, Qi ZY, Ali S, Daud MK, Geng XX, Liu HB, Zhou WJ (2013a) 5-aminolevulinic acid ameliorates cadmium-induced morphological, biochemical, and ultrastructural changes in seedlings of oilseed rape. Environ Sci Pollut Res Int 20:7256–7267. https://doi.org/10.1007/s11356-013-1735-5
  • Ali B, Wang B, Ali S, Ghani MA, Hayat MT, Yang C, Xu L, Zhou WJ (2013b) 5-aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul 32:604–614. https://doi.org/10.1007/s00344-013-9328-6
  • Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, Daud MK, Ali S, Zhou W (2015) Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. Plos One 10:e0123328. https://doi.org/10.1371/journal.pone.0123328
  • Arshi A, Abdin MZ, Iqbal M (2005) Ameliorative effects of CaCl2 on growth, ionic relations, and proline content of senna under salinity stress. J Plant Nutr 28:101–125. https://doi.org/10.1081/PLN-200042185
  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110. https://doi.org/10.1016/s0065-2113(07)00002-8
  • Athar HR, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63:224–231. https://doi.org/10.1016/j.envexpbot.2007.10.018
  • Beyer W, Fridovich I (1987) Assaying for superoxide dismutase activity; some large consequences of minor changes in condition. Anal Biochem 161:559–566. https://doi.org/10.1016/0003-2697(87)90489-1
  • Bhai KL, Singh AK (1998) Effect of different levels of phosphorus GA3 and pickings on seed production of okra (Abelmoschus esculentus L Moench). Environ Ecol 16:350–352. https://doi.org/10.1016/S0550-3213(99)00799-3
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999
  • Chan YX, Xu KD, Zhou L, Chen L (2013) Ascorbic acid mitigating the inhibition of salt stress to wheat seedling growth. J Triticeae Crops 33:151–155
  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404. https://doi.org/10.1007/s10725-014-0013-y
  • Gévaudant F, Duby G, Stedingk EV, Zhao RM, Morsomme P, Boutry M (2007) Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. Plant Physiol 144:1763–1776. https://doi.org/10.1104/pp.107.103762
  • Habib N, Ashraf M, Ali Q, Perveen R (2012) Response of salt stressed okra (Abelmoschus esculentus Moench) plants to foliar-applied glycine betaine and glycine betaine containing sugarbeet extract. S Afr J Bot 83:151–158. https://doi.org/10.1016/j.sajb.2012.08.005
  • Hammerschmidt R, Nuckles EM, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to colletotrichum lagenarium. Physiol Plant Pathol 20:73–82. https://doi.org/10.1016/0048-4059(82)90025-X
  • Iqbal M, Ashraf M (2013) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth ionic partitioning photosynthesis yield and hormonal homeostasis. Environ Exp Bot 86:76–85. https://doi.org/10.1016/j.envexpbot.2010.06.002
  • Jamil S, Ali Q, Iqbal M, Javed MT, Iftikhar W, Shahzad F, Perveen R (2015) Modulations in plant water relations and tissue-specific osmoregulation by foliar-applied ascorbic acid and the induction of salt tolerance in maize plants. Braz J Bot 38:527–538. https://doi.org/10.1007/s40415-015-0174-6
  • Kaya CA, Tuna L, Alves AAC (2006) Gibberellic acid improves water deficit tolerance in maize plants. Acta Physiol Plant 28:331–337. https://doi.org/10.1007/s11738-006-0029-7
  • Khan TA, Mazid M, Mohammad F (2011a) A review of ascorbic acid potentialities against oxidative stress induced in plants. J Agrobiol 28:97–111. https://doi.org/10.2478/v10146-011-0011-x
  • Khan TA, Mazid M, Mohammad F (2011b) A review of ascorbic acid potentialities against oxidative stress induced in plants. J Agrobiol 28:97–111. https://doi.org/10.2478/v10146-011-0011-x
  • Khandaker MM, Azam HM, Rosnah J, Tahir D (2018) Nashriyah M (2018) The effects of application of exogenous IAA and GA3 on the physiological activities and quality of Abelmoschus esculentus (Okra) var Singa 979. Pertanika J Trop Agric Sci 41:209–224
  • Kolber ZS, Barber RT, Coale KH et al (1994) Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 371:145–149. https://doi.org/10.1038/371145a0
  • Li JR, Yu K, Wei JR, Ma Q, Wang BQ, Yu D (2010) Gibberellin retards chlorophyll degradation during senescence of Paris polyphylla. Biol Plant 54:395–399. https://doi.org/10.1007/s10535-010-0072-5
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. https://doi.org/10.1016/0076-6879(87)48036-1
  • Maggio A, Barbieri G, Raimondi G, De Pascale S (2010) Contrasting effects of GA₃ treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29(1):63–72
  • Maity U, Dutta P, Laya B, Maity U, Dutta P, Laya B (2006) Effect of plant growth regulators on growth yield and quality of okra [Abelmoschus esculentus (l) moench]. Agric Sci Digest 26:178–1812006
  • Mohammed AHMA (2007) Physiological aspects of mungbean plant (Vigna radiata L Wilczek) in response to salt stress and gibberellic acid treatment. Res J Agric Biol Sci 3:200–213
  • Naeem MS, Warusawitharana H, Liu H, Liu D, Ahmad R, Waraich EA, Xu L, Zhou W (2012) 5-Aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast. Plant Physiol Biochem 57:84–92. https://doi.org/10.1016/j.plaphy.2012.05.018
  • Panwar M, Singh AK, Singh BK, Vani VM, Singh B (2012) Impact of foliar spray of GA3 and NAA on flowering fruiting and yield of okra Abelmoschus esculentus (L) Moench. Environ Ecol 30:1327–1329
  • Qian HF, Peng XF, Han X, Ren J, Zhan KY, Zhu M (2014) The stress factor exogenous ascorbic acid affects plant growth and the antioxidant system in Arabidopsis thaliana. Russ J Plant Physiol 61:467–475. https://doi.org/10.1134/S1021443714040141
  • Roslyakova TV, Molchan OV, Vasekina AV, Lazareva EM, Sokolik AI (2011) Salt tolerance of barley: relations between expression of isoforms of vacuolar Na⁺/H⁺-antiporter and 22Na⁺ accumulation. Russ J Plant Physiol 58:24–35. https://doi.org/10.1134/S1021443711010158
  • Saeidi-Sar S, Afshari H, Yaghoobi SR (2013) Effects of ascorbic acid and gibberellin a on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiol Plant 35:667–677. https://doi.org/10.1007/s11738-012-1107-7
  • Siddiqui MH, Khan MN, Mohammad F, Khan MMA (2008) Role of nitrogen and gibberellic acid (GA₃) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L under salt stress. J Agron Crop Sci 194:214–224. https://doi.org/10.1111/j.1439-037X.2008.00308.x
  • Simaei M, Khavarinejada RA, Saadatmanda S, Bernardb F, Fahimia H (2011) Interactive effects of salicylic acid and nitric oxide on soybean plants under NaCl salinity. Russ J Plant Physiol 58:783–790. https://doi.org/10.1134/S1021443711050220
  • Singh Z, Grewal GPS, Singh L, Müller W, Polesny F, Verheyden C, Webster AD (2000) Effects of gibberellina4/a7 and blossom thinning on fruit set, retention, quality, shoot growth and return bloom of phalsa (Grewia asiatica L.). Acta Hortic 2000:463–466. https://doi.org/10.17660/actahortic.2000.525.68
  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Plant Sci 19:267–290. https://doi.org/10.1080/10409230008984166
  • Tariq A, Masroor M, Khan A, Jaime A, Teixeira S, Mohd L, Naeem M (2011) Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. J Plant Growth Regul 30:425–435. https://doi.org/10.1007/s00344-011-9205-0
  • Tester M, Davenport R (2003) Na tolerance and Na transportation in higher plants. Ann Bot 91:503–527. https://doi.org/10.1093/aob/mcg058
  • Tsukada H, Takeda A, Hasegawa H, Ueda S, Iyogi T (2005) Comparison of NAA and ICP-MS for the determination of major and trace elements in environmental samples. J Radioanal Nucl Chem 263:773–778. https://doi.org/10.1007/s10967-005-0656-2
  • Upadhyaya A, Sankhla D, Davis TD, Sankhla N, Smith BN (1985) Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J Plant Physiol 121:453–461. https://doi.org/10.1016/S0176-1617(85)80081-X
  • Wang Y, Chen J, Zhang P, Gao J, Zhou C, Shi Q, Zhou R (2016) Effects of NaCl stress on growth and eco-physiological characteristics of different okra genotype in seedlings. Acta Agric Boreali Sin 31:105–110. https://doi.org/10.7668/hbnxb.2016.06.017
  • Yang GH, Yang LT, Jiang HX, Li Y, Wang P, Chen LS (2012) Physiological impacts of magnesium-deficiency in citrus seedlings: photosynthesis antioxidant system and carbohydrates. Trees 26:1237–1250. https://doi.org/10.1007/s00468-012-0699-2
  • Younis ME, Hasaneen MNA, Kazamel AMS (2010) Exogenously applied ascorbic acid ameliorates detrimental effects of NaCl and mannitol stress in Vicia faba seedlings. Protoplasma 239:39–48. https://doi.org/10.1007/s00709-009-0080-5
  • Zhao SJ, Xu CC, Zhou Q, Meng QW (1994) Improvements of method for measurement of malondialdehyde in plant tissue. Plant Physiol Commun 30:107–210

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-65c503b6-b707-4d34-a23e-fd9debd1f50a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.