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The renal actions of oxytocin were studied in the conscious unrestrained rat infused 
with 0.077 M saline at a rate of 150 ul/min. During the control period volume and 
sodium excretion reached stable equilibria, the rates being equal to those infused. 
Administration of oxytocin at 200 pmol/min produced plasma oxytocin levels of 
26.0+2.1 pmol/l and caused a significant diuresis and natriuresis. Renal responses 
could also be seen with a lower dose of 30 pmol/min which produced plasma levels 
of 5.1 +-0.5 pmol/l while a dose of 15 pmol/min which produced no significant increase 
in the plasma oxytocin had no renal effect. It appears that oxytocin has a natriuretic 
action in concentrations within the physiological range. 
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INTRODUCTION 

While the role of vasopressin in fluid balance is clear, that of the other 
neurohypophyseal hormone, oxytocin is not. Oxytocin is known to be relea- 

sed in the rat by an increase in plasma osmolality (1) and by a reduction in 
blood volume (2). Dehydration is also known to cause oxytocin release (3) 

and it has been suggested that this contributes to the natriuresis associated 

with dehydration, as this phenomena is seen to occur not only in the normal 

rat, but also in the Brattleboro rat (4). These observations have given new 

impetus to the idea that oxytocin may play a part in the mechanisms of sodium 

regulation. 
The renal actions of oxytocin are, however, far from clear. Oxytocin has 

been reported to have a diuretic action in some studies (5) and an antidiuretic 
action in others (6). This may in part be explained by the presence or absence 
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of vasopressin in the experimental preparations used, as oxytocin is seen to 
be antidiuretic in the water loaded ethanol anaesthetised rat (6) and in the 
Brattleboro rat (7); additionally oxytocin has been shown to act as a partial 
agonist of AVP (8). Oxytocin has also been shown to be natriuretic (9, 10), 
the increase in sodium excretion occurring both in the presence and absence 
of vasopressin and independently of the rate of urine flow (1, 8, 11). 

The doses required to produced natriuresis in many studies were very high, 

which would indicate that this natriuresis is not of physiological importance 

However, when oxytocin and vasopressin were administered together to the 

neurohypophysectomised rat a natriuresis was produced with very low doses 

of the hormone (12). Since these Studies, like most others, were performed 

in anaesthetised animals in which both hormone release and renal function 

would be affected (13, 14), these observations are now being extended to the 

conscious rat. The initial studies on the effects of vasopressin in the conscious 

rat have been reported (15), and here we described our observations on the 

renal actions of oxytocin. Initial reports of this work have been presented (16). 

METHODS 

Animals. All experiments were carried out on male Spraguc Dawley rats (250—300 g) allowed 

food (R & M Maintenance diet No 1, Special Diet Services Ltd. Witham, Essex, U. K.) and water 

ad libitum and housed under conditions of constant temperature and humidity. They were main- 

tained under conditions of 12h light/12h dark with the lights on at 06.00h 

Renal studies. Each rat was anaesthetised with sodium methahexitone (Brietal, Eli. Lily, India- 

napolis, U.S.A.) in a dose of 45 mg/kg body weight. The right jugular vein was cannulated with 

a saline filled polythene tube (O. D. 0.96 mm: I. D. 0.58 mm; PPS, Portex Ltd, Hythe, Kent, U. K.) 

which was subsequently guided through the subcutaneous tissue and exposed at the nape of the neck. 

The end of the cannula was sealed with a small pin and the cannula coiled into the small pocked 

of a fabric jacket around the forelimbs (17). The rats were left to recover overnight in individual 

housing cages. 

The following morning (0.8.30—10.00) the rats were placed in individual metabolism cages 

(N. K. P., Dartford, Kent, U. K.) An infusion punmp (Watson Marlow, model 502) was set to 

deliver 150 l/min of warmed, sterile 0.077 M saline via an extension line, which was fed through 

the top of the cage and weighted to allow the rats free movement without access to the cannula. 

The rats were infused for an equilibration period ot at least 3.5 h ending in a spontaneous 

urination. During this phase the urine voided was collected as a single sample and subsequently 

each spontaneous urination was timed and collected into a preweighed plastic tube. This infusion 

continued for at least 45 min, again ending at a spontaneous urination. Following this control 

period the infusate was switched to one of identical ionic composition, but containing synthetic 

oxytocin (Syntocinon, Sandoz Pharmaceuticals, Middlesex U.K.) delivered to the rat at a rate 

of 0,15 30 or 200 pmol/min. After 60 min of hormone administration, the animals were returned to 

hormone free infusate for a further 1.5 h, ending after a spontaneous urination.
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Determination of pla sma hormone levels. Parallel groups of rats were infused as described above. 
At the end of the 60 min of hormone infusion or comparable time in the controls, the infusion line 

was disconnected and the rats were decapitated. Trunk blood was collected into chilled heparinised 
tubes and a sample was also collected into a microhaematocrit tube for the determination of packed 
cell volume (PCV, Hawksley & Sons Ltd, Lancing, Sussex, U. K.). The plasma was separated and 
aliquots taken for electrolyte and hormone determinations. Blood samples were also collected from 
fats which been infused for only 3.5h and from non infused groups. 

Urine and plasma analyses. Urine volumes were determined gravimetrically. Urinary and plasma 

sodium and potassium concentrations were deteremined by flame photometry (Corning model 

410 C, Corning, Halsted. Essex U. K.). Plasma osmolality was determined by depression of the 
freezing point (Advanced Digimatic osmometer model 3D Needham Heights M.A. U.S.A.) 
and chloride using a chloride meter (Corning model 625). 

Each infusion period was divided into 15 min intervals. The mean urine flow and electrolyte 

excretion for each interval was calculated from the relative contribution of each each urine sample 

(or part of a sample which was produced during 2 intervals ) to that interval. 

Hormone assay. Plasma samples were extracted using silica columns (Sep-pak C50 Millipore 

M.A. U.S.A.) as previously described (18). Samples were then assayed for vasopressin against 

the First International Standard for vasopressin (77—501) and for oxytocin against the Fourth 

International Standard for oxytocin (76—575). All samples were processed in the same assay to 

avoid inter-assay variation, the intra-assay variations being 7.7 and 4.1% respectively. The limit 

of detection of the vasopressin, assay was 0.05 pmol/l and for the oxytocin assay 0.8 pmol/l. 

Data presentation. Values are presented as the means and standard error of the mean. As 

previously described for the renal studies the final 30 min of the contro] period was used to determine 

control excretion rates for each rat and was compared by paired Student’s t-tests to the final 30 min 

of the hormone period (15). All other analysis was carried out by unpaired Student’s t-tests or Spear- 

man’s rank correlation test. Significance was recorded at the 5% level. 

RESULTS 

After surgery and recovery, the rats had lost only 0.06+0.27% of their 
original body weight. Non-infused rats which had been implanted with cannu- 
lae had plasma vasopressin and oxytocin concentrations of 0.6+0.1 and 
3.9+1.0 pmol/l (n = 8) respectively. 

Behaviour during infusion. 

During the infusion the rats spent most of the time at rest, apart from 
brief activity for urination which occurred at 5—10 min intervals. Normally 

this was associated with grooming. The rats largely ignored the cannulae 

which did not impede movement or normal behaviour.
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Fluid balance during saline infusion. 

During the equilibration period the rats retained 4.72.1% of the infused 

volume and 6.2+9.0% of the infused sodium (n = 38). Rats decapitated after 

the 3.5h of equilibration had plasma vasopressin and oxytocin concentra- 

tions of 2.0-+-0.4 and 2.8--1.0 pmol/l (n = 6) respectively which were not 
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Fig. 1. Urine volume and sodium and potassium excretion during infusion of 0.077 M sodium chlo- 

ride at a rate of 150 ul'min (n = 11). Values presented are the mean +S.E. for 15 min collection 

periods. Rates of infusion are shown by dashed lines.
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significantly different from those measured in the non-infused controls. Simi- 
larly PCV, plasma sodium, chloride and osmolality were not significantly 
altered by 3.5 h of infusion. 

During the experimental period rats infused with saline retained a further 
5.2+2.0 of the fluid and 10.6+2.5°% (n = 7) of the sodium infused. The 
packed cell volume was significantly lower at 36.3+-0.8 % representing a 7.4% 
increase in blood volume. The fluid retained over this period was approxi- 
mately isotonic, and thus there was no significant change in plasma sodium 
or osmolality. A significant decrease in plasma vasopressin was seen in the 

controls, the levels becoming undetectable, but the fall in oxytocin to 2.8-- 
0.4 pmol/l (n = 7) was not significant. 

During control periods the rate of excretion approximated the rate of 

infusion allowing for the small amount of fluid and sodium retained as hown 

in Fig. 1. The rate of volume and sodium excretion remained stable over the 
course of the infusion period whilst that for pottassium tended to decrease. 

The effects of oxytocin infusion on urine volume and composition. 

Infusion of 7.5 pmol/min of oxytocin produced a small, but not stati- 

stically significant increase in plasma oxytocin concentration as compared 
to the controls and, as with all the doses of oxytocin used, plasma vasopressin 
concentrations were undetectable. This lowest infucion rate produced no 
significant change in the rate of urine flow or sodium excretion, and hence 
no significant alteration in the amount of fluid and sodium retained, the packed 
cell volume and plasma electrolyte concentrations remaining the same as those 

in the control. 

Infusion of 30 pmol/min of oxytocin produced plasma oxytocin concen- 
trations of 5.06-L0.5 pmol/l (n = 6). This led to a significant diuresis with 
a mean flow of 170.1--4.49 uljmin as compared to the control of 139.1+- 

7.4 vljmin (n = 9) and also to a significant increase in sodium excretion 
of 11.6+0.7 umol/min as compared to the control rate of 8.7--0.7 » mol/min. 
The higher rate of fluid excretion continued after the cessation of hormone 

infusion and the rats showed a net loss of fluid over the course cf the infusion 
of 5.3+3.2%. Sodium excretion returned to normal at the end of hormone 

infusion. 
The highest rate of oxytocin infusion of 200 pmol/min produced plasma 

oxytocin concentrations of 26.0-+-2.1 pmol/l (n = 6) and a significant increase 

in urine flow Fig. 2 from 139.6+6.1 p1/min to 186.0--9.07 ; l/min. The flow 
rate remained significantly elevated after the cessation of hormone infusion 

so that the overall volume retained was again significantly lower than in the 

controls. There was also a significant increase in the rate of sodium excretion 

from 9.7--0.6 to 14.8--0.6 ymol/min which also continued into the recovery
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Fig. 2. The effect of oxytocin administration at 200 pmol/min on urine flow and sodium and pota- 

ssium excretion (n = 9). Values presented are the mean +S. E. for 15 min collection periods. 

period. This was followed by a period of “rebound” when the rate of excre- 
tion fell below that of the control. Overall the amount of sodium retained 

was significantly less than in the control infusion being 2.7+2.2°% of that 

infused. The rate of potassium excretion remained constant throughout 

infusion of this dose of hormone, not declining as during control infusions. 
There was a significant correlation between the rate of urine flow and the rate 

of sodium excretion with all the doses of oxytocin employed (P < 0.001).
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DISCUSSION 

The possible role of oxytocin in the male has been a matter of speculation 
for a number of years. Apart from its possible role in sexual behaviour and 
sperm transport (19), no physiological role has been found to account for the 

consistent presence of the hormone in plasma. There is increasing evidence 
to suggest that in some species it may contribute to salt and water balance. 

Secretion of oxytocin in the rat is affected by the hydrational state of the 

animal. Increasing the extracellular sodium concentration results in increa- 

sed firing rate of putative oxytocinergic neurones and increased hormone 

secretion (20). A linear relationship has been found between the release of 

oxytocin and the plasma osmolality (1) similar to that for vasopressin. Oxy- 

tocin is also released by increased cerebrospinal fluid sodium concentra- 
tions (21). Hypovolaemia has been found to stimulate oxytocin release (2) 
and as would be expected from these observations dehydration, too, results 

in increased circulating concentrations of oxytocin in the rat, although not 

in species such as the goat (22). Interestingly dehydration reverses the normal 

daily variations in oxytocin secretion seen in the euhydrated rat. Plasma 

oxytocin concentrations normally increase over the light hours of the 24h 
cycle whereas during dehydration they fall over this phase despite a geneal 

upward trend (23). The relative elevation of oxytocin during the dark phase 

of the 24 hour cycle would appear to be associated with the relatively high 
intake of sodium in the absence of water. Consistent with this suggestion is 

the finding that oxytocin secretion is increased following ingestion of food (24). 

The levels of oxytocin achieved on dehydration (23) were found in this 

study to be effective in promoting a natriuresis. The idea that oxytocin may 

promote sodium excretion is not new. Sawyer in 1952 working on rats (25) 
and Abrahams and Pickford in 1954 working on dogs (26) reported that 
oxytocin administration resulted in a natriuresis. These observations were 

confirmed by Balment et al (1), who subsequently demonstrated that in the 
acutely neurohypophysectomised rat oxytocin acts synergistically with vaso- 

pressin to promote salt excretion (12). The natriuretic response is also seen 
in Brattleboro rats (27) which is consistent with the suggestion that increased 

plasma oxytocin may be responsible for the increased sodium excretion 

seen during dehydration (4). While these earlier studies were performed on 
anaesthetised animals, the present investigation confirms that oxytocin is 

also natriuretic in the conscious animal. The increase in sodium excretion 

with even the highest dose was relatively modest. However, natriuretic respon- 
ses to vasopressin that we have observed in animals fiom the Sprague Dawley 

colony eployed were smaller that that previously reported (15), suggesting 

a slight difference in technique, or variability in colony may affect fluid ba- 

lance as has been previously reported (28). . 
6 — Journal of Physiol. and Pharmacology
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The mechanisms underlying the oxytocin induced natriuresis have yet 

to be identified. Increased salt loss following infusion of the other neuro- 

hypophyseal hormone, vasopressin, has been attributed to altered tubular 

handling of sodium (29) and changes in filtered load (30). Lote, Thewles, and 

Wood (31) were able to exclude atrial natriuretic factor and prostaglandin 

E, as essential mediators of the response. Similar mechanisms would be 
expected for oxytocin. Receptors for oxytocin have been described in the 

glomerulus (32) and an oxytocin induced increase in the glomerular filtration 

rate (GFR) has been described in rats with and without hereditary diabetes 

insipidus (33, 34). The increase in GFR does not rule out the possibility of 

a further tubular action of oxytocin although neither the location nor the 

type of receptor mvolved is known. The natriuretic response of vasopressin 

may occur via a V subtype receptor (35) and whether there is partial agonist 
action of the oxytocin at this receptor is unknown. Chan (36) reported that 

the natriuretic response to oxytocin is blocked by an antagonist of the hormone, 

[Pen-Phe(Me)?Thr*Ora] oxytocin Steir, Manning and Sawyer (37) found 

that the natriuretic potency of a small series of oxytocin analogues did not 
parallel their oxytocic, pressor or antidiuretic activities in rats. The blood 
volume of the rats was slightly expanded in the present studies and this could 
cause a natriuresis (38) but, the greatest natriuresis occurred with the smallest 
retention of volume. We have shown that the rate of flow was correlated to 

the rate of natriuresis in these studies. The diuresis brought about by oxytocin 

probably occurred as a result of the partial agonist effect at the V2. receptor, 
its concentration being sufficient to displace the residual vasopressin present. 

In summary oxytocin, in concentrations seen in altered hydrational states, 

produces a natriuresis and a diuresis in the conscious rat indicating that the 

hormone may have a role in salt and water balance. The mechanisms under- 

lying the response remain to be established. 
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