PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 84 | 1 |

Tytuł artykułu

Identification and quantitative determination of pinoresinol in Taxus x media Rehder needles, cell suspension and shoot cultures

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of our study was to investigate the presence and quantitative contents of lignans in the tissues of Taxus ×media. The presence of the lignans: pinoresinol, matairesinol and secoisolariciresinol was assessed in needles, shoots cultures and suspension culture. Pinoresinol was the only lignan found in the tissue of T. ×media. The total pinoresinol content in the needles and in the shoots was 1.24 mg/g dry weight (dw) and 0.69 mg/g dw, respectively. Most of the pinoresinol identified was appeared glycosidically bound. In needles, the amount of glycosidically bound pinoresinol (0.81 mg/g dw) was about twice as high as that of free pinoresinol (0.43 mg/g dw). The content of free and glycosidically bound pinoresinol showed the level of 0.18 mg/g dw and 0.51 mg/g dw, respectively in the in vitro shoot cultures. In the cell culture, no pinoresinol was found.

Wydawca

-

Rocznik

Tom

84

Numer

1

Opis fizyczny

p.125-132,fig.,ref.

Twórcy

autor
  • Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
  • Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
  • Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
  • Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
autor
  • Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
autor
  • Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland

Bibliografia

  • 1. Kingston DGI, Molinero AA, Rimoldi JM. The taxane diterpenoids. In: Herz W, Kirby GW, Moore RE, Steglich W, Tamm C, editors.Progress in the chemistry of organic natural products. New York, NY:Springer; 1993. p. 1–206. http://dx.doi.org/10.1007/978-3-7091-9242-9
  • 2. Parmar VS, Jha A, Bisht KS, Taneja P, Singh SK, Kumar A, et al. Constituents of the yew trees. Phytochemistry. 1999;50:1267–1304.http://dx.doi.org/10.1002/chin.199929276
  • 3. Lee KH, Xiao Z. Lignans in treatment of cancer and other diseases. Phytochem Rev. 2003;2:341–362. http://dx.doi.org/10.1023/B:PHYT.0000045495.59732.58
  • 4. Umezawa T. Diversity in lignan biosynthesis. Phytochem Rev. 2003;2:371–390. http://dx.doi.org/10.1023/B:PHYT.0000045487.02836.32
  • 5. Lewis NG, Davin LB. Lignans: biosynthesis and function. In: Sankawa U, editor. Comprehensive natural products chemistry. Amsterdam:Elsevier; 1999. p. 639–712. (vol 1). http://dx.doi.org/10.1021/bk-1995-0588.ch013
  • 6. Umezawa T. Biosynthesis of lignans and related phenylpropanoid compounds. Reg Plant Growth Dev. 2001;36:57–67.
  • 7. Umezawa T, Davin LB, Lewis NG, 1990. Formation of the lignan, (−)secoisolariciresinol, by cell free extracts of Forsythia intermedia.Biochem Biophys Res Commun. 1990;171:1008–1014. http://dx.doi.org/10.1016/0006-291X(90)90784-K
  • 8. Katayama T, Davin LB, Lewis NG. An extraordinary accumulation of (−)-pinoresinol in cell-free extracts of Forsythia intermedia: evidence for enantiospecific reduction of (+)-pinoresinol. Phytochemistry.1992;31:3875–3881. http://dx.doi.org/10.1016/S0031-9422(00)97545-9
  • 9. Katayama T, Davin LB, Alex CA, Norman G. Lewis NG. Novel benzylic ether reductions in lignan biogenesis in Forsythia intermedia.Phytochemistry. 1993;33:581–591. http://dx.doi.org/10.1016/0031-9422(93)85452-W
  • 10. Umezawa T, Kuroda H, Isohata T, Higuchi T, Shimada M. Enantioselective lignan synthesis by cell-free extracts of Forsythia koreana. BiosciBiotechnol Biochem 1994;58:230–234. http://dx.doi.org/10.1271/bbb.58.230
  • 11. Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, et al. Stereoselective bimolecular phenoxy radical coupling byan auxiliary (Dirigent) protein without an active center. Science.1997;275:362–367. http://dx.doi.org/10.1126/science.275.5298.362
  • 12. Topcu G, Demirkiran O. Lignans from Taxus species. Top Heterocycl Chem. 2007;11:103–144. http://dx.doi.org/10.1007/7081_2007_082
  • 13. Shen YC, Chen CY, Lin YM, Kuo YH. A lignan from roots of Taxus mairei. Phytochemistry. 1997;46:1111–1113. http://dx.doi.org/10.1016/S0031-9422(97)00352-X
  • 14. Shi QW, Oritani T, Sugiyama T, Yamada T. Taxane diterpenoids from he seeds of Chinese yew, Taxus mairei. Nat Prod Lett. 1999;13:179–186. http://dx.doi.org/10.1080/10575639908048784
  • 15. Yang SJ, Fang JM, Cheng YS. Lignans, flavonoids and phenolic derivatives from Taxus mairei. J Chin Chem Soc. 1999;46:811–818. http://dx.doi.org/10.1002/jccs.199900109
  • 16. Das B, Takhi M, Srinivas KVNS, Yadav JS. Phenolics from needles of himalayan Taxus baccata. Phytochemistry. 1993;33:1489–1491. http://dx.doi.org/10.1016/0031-9422(93)85117-A
  • 17. Das B, Takhi M, Srinivas KVNS, Yadav JS. A lignan from needles of himalayan Taxus baccata. Phytochemistry. 1994;36:1031–1033. http:// dx.doi.org/10.1016/S0031-9422(00)90485-0
  • 18. Das B, Padma Rao S, Srinivas KVNS, Yadav JS. Lignans, biflavones and taxoids from Himalayan Taxus baccata. Phytochemistry.1995;38(3):715–717. http://dx.doi.org/10.1016/0031-9422(94)00678-M
  • 19. Erdemoglu N, Sener B, Ozcan Y, Ide S. Structural and spectroscopic characteristics of two new dibenzylbutane type lignans from Taxusbaccata L. J Mol Struct. 2003;655:459–466. http://dx.doi.org/10.1016/S0022-2860(03)00359-4
  • 20. Erdemoglu N, Sener B, Choudhary MI. Bioactivity of lignans from Taxus baccata. Z Naturforsch C. 2004;59c:494–498.
  • 21. King FE, Jurd L, King TJ. Iso-taxiresinol (3'-demethylisolariciresinol) a new lignan extracted from the heartwood of the English yew,Taxus baccata. J Chem Soc. 1952;17–24. http://dx.doi.org/10.1039/JR9520000017
  • 22. Mujumdar RB, Srinivasan R, Venkataraman K. Taxiresinol, a new lignan in the heartwood of Taxus baccata. Indian J Chem.1972;10:677–680.
  • 23. Yin J, Tezuka Y, Subehan SL, Nobukawa M, Nobukawa T, Kadota S. In vivo anti-osteoporotic activity of isotaxiresinol, a lignan from woodof Taxus yunnanensis. Phytomedicine. 2006;13:37–42. http://dx.doi.org/10.1016/j.phymed.2004.06.017
  • 24. Shen YC, Chen CY, Chen YJ, Kuo YH, Chien CT, Lin YM. Bioactive lignans and taxoids from the roots of formosan Taxus mairei. ChinPharm J. 1997;49:285–296.
  • 25. Banskota AH, Usia T, Tezuka Y, Kouda K, Nguyen NT, Kadota S. Three new C-14 oxygenated taxanes from the wood of Taxusyunnanensis. J Nat Prod. 2002;65(11): 1700–1702. http://dx.doi.org/10.1021/np020235j
  • 26. Chattopadhyay SK, Kumar TRS, Maulik PR, Srivastava S, Garg A, Sharon A, et al. Absolute configuration and anticancer activity of taxiresinol and related lignans of Taxus wallichiana. Bioorg Med Chem. 2003;11:4945–4948. http://dx.doi.org/10.1016/j.bmc.2003.09.010
  • 27. Tsukamoto H, Hisada A, Nishibe S. Lignans from bark of the
  • Olea plants. Chem Pharm Bull. 1984;32:2730–2735. http://dx.doi.
  • org/10.1248/cpb.32.2730
  • 28. Ishida J, Wang HK, Oyama M, Cosentino ML, Hu CQ, Lee KH.
  • Anti-AIDS agents. 46.1 anti-HIV activity of harman, an anti-HIV
  • principle from Symplocos setchuensis, and its derivatives. J Nat Prod.
  • 2001;64:958–960. http://dx.doi.org/10.1021/np0101189
  • 29. Schmitt J, Petersen M. Pinoresinol and matairesinol accumulation in a
  • Forsythia ×intermedia cell suspension culture. Plant Cell Tissue Organ
  • Cult. 2002;68:91–98. http://dx.doi.org/10.1023/A:1012909131741
  • 30. Gupta PK, Durzan DJ. Shoot multiplication from mature trees of
  • Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana).
  • Plant Cell Rep. 1985;4:177–179. http://dx.doi.org/10.1007/
  • BF00269282
  • 31. Lloyd G, McCown B. Commercially-feasible micropropagation of
  • mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb
  • Proc Int Plant Prop Soc. 1980;30:420–427.
  • 32. Gamborg OL, Miller RA, Ojima O. Nutrient requirements of suspension
  • cultures of soybean root cell. Exp Cell Res. 1968;50:151–158.
  • http://dx.doi.org/10.1016/0014-4827(68)90403-5
  • 33. Rangaswamy NS. Experimental studies on female reproductive structures
  • of Citrus microcarpa Bunge. Phytomorphology. 1961;11:109–127.
  • 34. Tóth S, Scott P, Sorvari S, Toldi O. Effective and reproducible protocols
  • for in vitro culturing and plant regeneration of the physiological model
  • plant Ramonda myconi (L.) Rchb. Plant Sci. 2004;166:1027–1034.
  • http://dx.doi.org/10.1016/j.plantsci.2003.12.020
  • 35. Theodoridis G, de Jong CF, Laskaris G, Verpoorte R. Application of
  • SPE for the HPLC analysis of taxanes from Taxus cell cultures. Chromatographia.
  • 1998;47:25–34. http://dx.doi.org/10.1007/BF02466782
  • 36. Okuyama E, Suzumurak K, Kamazaki M. Pharmacologicaly active
  • compounds of Todopon Puok (Fragraea racemosa), a medical plant
  • from Borneo. Chem Pharm Bull. 1995;43:2200–2204. http://dx.doi.
  • org/10.1248/cpb.43.2200
  • 37. Tsukamoto H, Hisada S, Nishibe S. Lignans from the bark of
  • Olea plants. Chem Pharm Bull. 1984;32:2730–2735. http://dx.doi.
  • org/10.1248/cpb.32.2730
  • 38. Mitsuhashi S, Kishimoto T, Uraki Y, Okamoto T, Ubukata M. Low
  • molecular weight lignin suppresses activation of NF-κB and HIV-1
  • promoter. Bioorg Med Chem. 2008;16:2645–2650. http://dx.doi.
  • org/10.1016/j.bmc.2007.11.041
  • 39. Hyo WJ, Ramalingam M, Jong GL, Seung HL, Young SK, Yong-Ki P.
  • Pinoresinol from the fruits of Forsythia koreana inhibits inflammatory
  • responses in LPS-activated microglia. Neurosci Lett. 2010;480:215–
  • 220. http://dx.doi.org/10.1016/j.neulet.2010.06.043
  • 40. Wikul A, Damsud T, Kataoka K, Phuwapraisirisan P. (+)-Pinoresinol
  • is a putative hypoglycemic agent in defatted sesame (Sesamum indicum)
  • seeds though inhibiting a-glucosidase. Bioorg Med Chem Lett.
  • 1012;22:5215–5217. http://dx.doi.org/10.1016/j.bmcl.2012.06.068
  • 41. Wang Y, Ma L, Pang C, Huang M, Huang, Z, Gu L. Synergetic inhibition
  • of genistein and d-glucose on α-glucosidase. Bioorg Med Chem
  • Lett. 2004;14:2947–2950. http://dx.doi.org/10.1016/j.bmcl.2004.03.035
  • 42. Liu Z, Saarinen NM, Thompson LU. Sesamin is one of the major
  • precursors of mammalian lignans in sesame seed (Sesamum indicum)
  • as observed in vitro and in rats. J Nutr. 2006;136:906–912.
  • 43. Fini L, Hotchkiss E, Fogliano V, Graziani G, Romano M, de Vol EB,
  • et al. Chemopreventive properties of pinoresinol-rich olive oil involve
  • a selective activation of the ATM-p53 cascade in colon cancer cell
  • lines. Carcinogenesis. 2008;29(1):139–146. http://dx.doi.org/10.1093/
  • carcin/bgm255
  • 44. Wang H, Li MC, Yang J, Yang D, Su YF, Fan GW, et al. Estrogenic
  • properties of six compounds derived from Eucommia ulmoides Oliv.
  • and their differing biological activity through estrogen receptors alpha
  • and beta. Food Chem. 2011;129:408–416. http://dx.doi.org/10.1016/j.
  • foodchem.2011.04.092
  • 45. Zhu Y, Bian Z, Lu P, Karas RH, Bao L, Cox D, et al. Abnormal vascular
  • function and hypertension in mice deficient in estrogen receptor
  • beta. Science. 2002;295(5554):505–508. http://dx.doi.org/10.1126/
  • science.1065250
  • 46. Kawamura F, Kikuchi Y, Ohira T, Yastagai M. Phenolic constituents of
  • Taxus cuspidata. I: lignans from the roots. J Wood Sci. 2000;46:167–
  • 171. http://dx.doi.org/10.1007/BF00777366
  • 47. Willför S, Nisula L, Hemming J, Reunanen M, Holmbom B. Bioactive
  • phenolic substances in industrially important tree species. Part
  • 1: knots and stemwood of different spruce species. Holzforschung.
  • 2005;58(4):335–344. http://dx.doi.org/10.1515/HF.2004.052
  • 48. Willför S, Nisula L, Hemming J, Reunanen M, Holmbom B. Bioactive
  • phenolic substances in industrially important tree species. Part 2: knots
  • and stemwood of fir species. Holzforschung. 2005;58(6):650–659.
  • http://dx.doi.org/10.1515/HF.2004.119
  • 49. Milder IE, Arts IC, van de Putte B, Venema DP, Hollman PC. Lignan
  • contents of Dutch plant foods: a database including lariciresinol,
  • pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr.
  • 2005;93(3):393–402. http://dx.doi.org/10.1079/BJN20051371
  • 50. Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wähälä K, Deyama
  • T, et al. In vitro metabolism of plant lignans: new precursors of
  • mammalian lignans enterolactone and enterodiol. J Agric Food Chem.
  • 2001;49:3178–3186. http://dx.doi.org/10.1021/jf010038a
  • 51. Apendino G, Cravotto G, Enriu R, Gariboldi P, Barboni L, Torregiani
  • E, et al. Taxoids from the roots of Taxus ×media cv. Hicksii. J Nat
  • Prod. 1994;57:607–613.
  • 52. Katayama T, Masaoka T, Yamada H. Biosynthesis and stereochemistry
  • of lignans in Zanthoxylum ailanthoides. I. (+)-Lariciresinol formation
  • by enzymatic reduction of (±)-pinoresinols. Mokuzai Gakkaishi.
  • 1997;43:580–588.
  • 53. Xia ZQ, Costa MA, Pelissier HC, Davin LB, Lewis NG. Secoisolariciresinol
  • dehydrogenase purification, cloning, and functional
  • expression. Implications for human health protection. J Biol Chem.
  • 2001;276:12614–12623. http://dx.doi.org/10.1074/jbc.M008622200

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-65944977-7b5f-4993-8a00-8e106fe8252c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.