PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 07 |
Tytuł artykułu

Hairy roots of Dracocephalum moldavica: rosmarinic acid content and antioxidant potentia

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hairy roots of Dracocephalum moldavica L. were induced using Agrobacterium rhizogenes strain A4. Transformed roots were obtained from shoot explants with low transformation frequency of up to 3 %. The effects of different liquid media: Murashige and Skoog (MS), Gamborg et al. (B5) and Woody Plant (WP) with full- and half-strength (1/2MS, 1/2B5, 1/2WP), on biomass accumulation and rosmarinic acid (RA) content were investigated. The hairy roots were cultured in photoperiod (16 h light/8 h dark) and darkness. Biomass of D. moldavica hairy roots was the highest (7.23 g flask-1 of fresh weight and 0.89 g flask-1 of dry weight) in the cultures grown in WP medium under periodic light. Ultra performance liquid chromatography analysis revealed the highest RA content (78 mg g-1 dry wt) in roots cultured in 1/2B5 medium under photoperiod conditions. It was about tenfold higher compared to roots of field-grown mother plants. Antioxidant activities and total phenolic contents of methanolic extracts of D. moldavica hairy roots cultured in 1/2B5 and WP media under photoperiod and darkness and roots of field grown plants were compared. All extracts were investigated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging and phosphomolybdenum reduction assays. Total phenolic contents were estimated by the Folin– Ciocalteu method. The methanolic extract of D. moldavica hairy roots grown in 1/2B5 medium under photoperiod possessed the strongest effects on reducing Mo and DPPH radical scavenging. The activities were significantly higher (p B 0.05) than those of methanolic extract of roots of intact plants grown in the field. The most active methanolic extract of hairy roots was characterized by the highest level of rosmarinic acid and total content of phenolic compounds.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
35
Numer
07
Opis fizyczny
p.2095-2103,fig.,ref.
Twórcy
  • Department of Biology and Pharmaceutical Botany, Medical University of Ło´dz´, Muszyn´skiego1, 90-151 Lodz, Polan
  • Department of Biology and Pharmaceutical Botany, Medical University of Ło´dz´, Muszyn´skiego1, 90-151 Lodz, Polan
autor
  • Department of Toxicology, Medical University of Ło´dz´, Muszyn´skiego1, 90-151 Lodz, Poland
autor
  • Department of Biotechnology, University of Gdan´sk and Medical University of Gdan´sk, Kładki 24, 80-822 Gdan´sk, Poland
  • Department of Biology and Pharmaceutical Botany, Medical University of Ło´dz´, Muszyn´skiego1, 90-151 Lodz, Polan
Bibliografia
  • Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40:983–995. doi:10.1016/s0981-9428(02)1460-2
  • Bauer N, Leljak-Levanic D, Jelaska S (2004) Rosmarinic acid synthesis in transformed callus culture of Coleus blumei Benth. Z Naturforsch 59c:554–560
  • Bauer N, Kiseljak D, Jelaska S (2009) The effect of yeast extract and methyl jasmonate on rosmarinic acid accumulation in Coleus blumei hairy roots. Biol Plantarum 53:650–656. doi:10.1007/s10535-009-0147-3
  • Bauer N, Fulgosi H, Jelasaka S (2011) Overexpression of phenylalanine ammonia-lyase in transgenic roots of Coleus blumei alerts growth and rosmarinic acid synthesis. Food Technol Biotech 49:24–31
  • Bekesiova I, Nap JP, Mlynarova L (1999) Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Mol Biol Rep 17:269–277. doi:10.1023/A:1007627509824
  • Bensaddek L, Gillet F, Nava-Saucedo JE, Fliniaux MA (2001) The effect of nitrate and ammonium concentrations on growth and alkaloid accumulation of Atropa belladonna hairy roots. J Biotechnol 85:35–40. doi:10.1016/S0168-1656(00)00372-2
  • Brand–Williams W, Cuvelier ME, Berset C (1995) Use of a free radical methods evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30. doi:10.1016/S0023-6438(95)80008-5
  • Chun SS, Vattem DA, Lin YT, Schetty K (2005) Phenolic antioxidant from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochem 40: 809–816. doi:10.1016/j.procbio.2004.02018
  • Danesh YR, Galtapeh EM, Alizadeh A (2006) Study on the growth patterns of transformed carrot hairy roots in on optimized system. J Agric Technol 2:89–97
  • Dastmalchi K, Dorman HJD, Kosar M, Hiltunen R (2007a) Chemical composition and in vitro antioxidant evaluation of water-soluble Moldavian balm (Dracocephalum moldavica L.) extract. Food Sci Technol 40:239–248. doi:10.1016/j.lwt.2005.09.019
  • Dastmalchi K, Dorman HJD, Laakso I, Hiltunen R (2007b) Chemical composition and antioxidative activity of evaluation Moldavian balm (Dracocephalum moldavica L.) extracts. Food Sci Technol 40:1655–1663. doi:10.1016/j.lwt.2006.11.013
  • Françoise B, Hossein S, Halimeh H, Zahra NF (2007) Growth optimization of Zataria multiflora Boiss. tissue cultures and rosmarinic acid production improvement. Pak J Biol Sci 10:3395–3399. doi:10.3923/pjbs.2007.33395.3399
  • Furtado MA, Almeida LCF, Furtado RA, Cuntra WR, Tavers DC (2008) Antimutagenicity of rosmarinic acid in swiss mice evaluated by the micronucleus assay. Mutat Res Genet Toxicol Environ 657:150–154. doi:10.1016/j.mrgentox.2008.09.003
  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5
  • Georgiev M, Kuzeva S, Pavlov A, Kovackeva E, Ilieva M (2006) Enhanced rosmarinic acid production by Lavandula vera MM cell suspension culture through elicitation with vanadyl sulfate. Z Naturforsch 61c:241–244
  • Ghanndi A, Sajjadi SE, Abedi D, Yousefi J, Daraei-Ardekami R (2004) The in vitro activity of seven Iranian plants of the Lamiaceae family against Helicobacter pylori. Niger J Nat Prod Med 8:40–42
  • Giri A, Narasu ML (2000) Transgenic hairy root recent trends and applications. Biotechnol Adv 18:1–22. doi:10.1016/S0734-9750(99)00016-6
  • Grzegorczyk I, Królicka A, Wysokińska H (2006) Establishment of Salvia officinalis hairy root cultures for the production of rosmarinic acid. Z Naturforsch 61C:351–356
  • Janicsàk G, Màthè I, Miklòssy-Vàri V, Blunden G (1999) Comparative studies of the rosmarinic and caffeic acid contents of Lamiceae species. Biochem Syst Ecol 27:733–738. doi:10.1016/jbse.2005.12.004
  • Kakasy AF, Füzfai Z, Kursinszki L, Malnàr-Parl I, Lemberkovics E (2006) Analysis of non-volatile constituents in Dracocephalum species by HPLC and GC–MS. Chromatographia 63:17–23. doi: 10.1365/s10337-006-0741-x
  • Kim HK, Oh SR, Lee HK, Huh H (2001) Benzothidiazole enhances the elicitation of rosmarinic acid production in a suspension culture of Agastache rugosa O. Kuntze. Biotechnol Lett 23:55–60. doi:10.1023/A:1026738409671
  • Kochan E, Wysokińska H, Chmiel A, Grabias B (1999) Rosmarinic acid and other phenolic acids in hairy roots of Hyssopus officinalis. Z. Naturforsh 54c:11–16
  • Komali AS, Schetty K (1998) Comparison of the growth pattern and rosmarinic acid production in rosemary (Rosmarinus officinalis) shoots and genetically transformed callus cultures. Food Biotechnol 12:27–41. doi:10.1080/08905439809549941
  • Krzyżanowska J, Czubacka A, Pecio Ł, Przybyś M, Doroszewska T, Stochmal A, Oleszek W (2011) The effect of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha 9 piperita cell suspension cultures. Plant Cell Tissue Organ Cult 108:73–81. doi:10.1007/s11240-011-0014-8
  • Lamien–Meda A, Nell M, Lohwaner U, Bömer A, Franz C, Novak J (2010) Investigation on antioxidant and rosmarinic acid variation in the sage collection of the genebank gatersleben. J Agric Food Chem 58:3813–3819. doi:10.1021/jf903993f
  • Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T (2005) Rosmarinic acid production by Coleus forskohlii hairy roots. Plant Cell Tissue Organ Cult 80:151–155. doi:10.1007/s11240-004-9541-x
  • Lloyd G, Mc Cown B (1981) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia by use of shoot tip culture. Int Plant Prop Soc 30:421–427
  • Ly TN, Shimoyama M, Yamamuchi R (2006) Isolation and characterization of rosmarinic acid oligomers in Celastrus hindssi Benth leaves and their antioxidative activity. J Agric Food Chem 54:3786–3793. doi:10.1021/jf052743f
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plantarum 15:473–497. doi:10.1111/ppl.1962.15.issue-3/issutoc
  • Nuengchamong N, Krittasilp K, Ingkaniaran K (2011) Characterization of phenolic antioxidants in aqueous extract of Orthosiphon grandiflorus tea by LC–ESI–MS/MS coupled to DPPH assay. Food Chem 127:1287–1293. doi:10.1016/j.foodchem.2011.01.085
  • Park S, Kim D (1993) Significance of fresh weight to dry cell weight ratio in plant cell suspension. Biotechnol Tech 9:627–630. doi: 10.1007/BF00151859
  • Park SU, Uddin MR, Xu H, Kim YK, Lee SY (2008) Biotechnological applications for rosmarinic acid production in plant. Afr J Biotechnol 7:4959–4965. doi:10.5897/AJB08.088
  • Popova OI, Nikitina AS, Markova OM (2008) Studies of iridoids from Dracocephalum moldavica cultivated in the Stavropol region. Pharm Chem J 42:351–353. doi:10.1007/s11094-008-01239
  • Povilaitytè V, Cuvelier ME, Berset C (2001) Antioxidant properties of moldavian dragonhead (Dracocephalum moldavica L.). J Food Lipids 8:45–64. doi:10.1111/j.1745-4522.2001t600183x
  • Prieto P, Pineda M, Aquilar M (1999) Spectrophotomeric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex; specific application to the determination of vitamin E. Anal Biochem 269:337–341. doi:10.1006/abio.1999.4019
  • Richter G (1993) Me`tabolisme des vègètaux physiologie et biochimie. Presses Polytechniques et Universitaires Romandes, Lousanne, pp. 341–344
  • Sanchez-Medina A, Ethridge CJ, Hawkes GL, Hylands PJ, Pendry BA, Hughes MJ, Corcoran O (2007) Comparison of rosmarinic acid content in commercial tinctures produced from fresh and dried limon balm (Melissa officinalis). J Pharm Sci 10:455–463
  • Singleton V, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Viticult 16:144–158
  • Sultan A, Bahang H, Aisa HA, Eshbakova KA (2008) Flavonoids from Dracocephalum moldavica. Chem Nat Comp 44:366–367. doi:10.1007/s10600-008-9065-4
  • Tewtrakul S, Miyashio H, Nakamura N, Hattori M, Kawahata T, Otaku T, Yoshinaga T, Fujiwara T, Supavita T, Yuenyongsawad S, Rattanasuwon P, Dej-Adisai S (2003) HIV-I integrase inhibitory substances from Coleus paroifolius. Phytotherapy Res 17:232–239. doi:10.1002/pfr.1111
  • Vervliet G, Holsters M, Teuchy H, Van Montagu M, Shell J (1975) Characterization of different plaque-forming and defective temperate phages in Agrobacterium strains. J Gen Virol 26: 33–48. doi:10.1099/0022-1317-26-1-49
  • Wu CH-H, Dewir YH, Hahn E-J, Paek KY (2006) Optimization of culturing conditions for the production of biomass and phenolic from adventitious roots of Echinacea angustifola. J Plant Biol 49:193–199. doi:10.1007/BF03030532
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-64cd15f0-2fb3-4fe1-819a-cbcac5eeba4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.