PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 2 |

Tytuł artykułu

Model-based assessment of priority protected areas: a case Study on Fraxinus mandshurica in China

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Climate change has greatly affected the natural habitats of wild plants, especially vulnerable species. However, methods to properly assess priority protected areas (PPAs) that consider climate change have not been established. The distribution of Fraxinus mandshurica in northeast China was assessed, and our goal was to develop model-based strategies for the assessment of PPAs in consideration of climate change. To achieve this goal, we mapped the current and future suitable habitat distributions of F. mandshurica and planned PPAs based on 4 field surveys in northeast China. The models used in this study included a species distribution model (Maxent), systematic conservation planning model (Zonation), and geographic information system (ArcGIS 10.0). To promote sustainable development, the current and future suitable habitats of F. mandshurica must be integrated into the assessment of PPAs; however, the conservation areas of F. mandshurica in existing nature reserves cannot realize the conservation criterion of the Global Strategy for Plant Conservation (GSPC). In the eastern and northeastern regions of northeast China, the suitable habitats are predicted to migrate slightly northwards in the future. The methods used in this study are adequate for the assessment of PPAs and may provide a reference for the conservation and management of vulnerable plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

2

Opis fizyczny

p.725-733,fig.,ref.

Twórcy

autor
  • State Engineering Laboratory of Bio-Resource Eco-Utilization (Heilongjiang), Northeast Forestry University, Harbin City, Heilongjiang 150040, China
autor
  • State Engineering Laboratory of Bio-Resource Eco-Utilization (Heilongjiang), Northeast Forestry University, Harbin City, Heilongjiang 150040, China
autor
  • State Engineering Laboratory of Bio-Resource Eco-Utilization (Heilongjiang), Northeast Forestry University, Harbin City, Heilongjiang 150040, China
autor
  • State Engineering Laboratory of Bio-Resource Eco-Utilization (Heilongjiang), Northeast Forestry University, Harbin City, Heilongjiang 150040, China
autor
  • Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang City, Liaoning 110016, China
autor
  • Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang City, Liaoning 110016, China
autor
  • State Engineering Laboratory of Bio-Resource Eco-Utilization (Heilongjiang), Northeast Forestry University, Harbin City, Heilongjiang 150040, China
autor
  • State Engineering Laboratory of Bio-Resource Eco-Utilization (Heilongjiang), Northeast Forestry University, Harbin City, Heilongjiang 150040, China

Bibliografia

  • 1. THOMAS C. D., CAMERON A., GREEN R. E., BAKKENES M., BEAUMONT L. J., COLLINGHAM Y. C., ERASMUS B. F. N., FERREIRA DE SIQUEIRA M., GRAINGER A., HANNAH L., HUGHES L., HUNTLEY B., VAN JAARSVELD A. S., MIDGLEY G. F., MILES L., ORTEGA-HUERTA M. A., TOWNSEND PETERSON A., PHILLIPS O. L., WILLIAMS S. E., Extinction risk from climate change. Nature 427, 145-148, 2004.
  • 2. BROENNIMANN O., THUILLER W., HUGHES G., MIDGLEY G. F. ALKEMADE J. R., GUISAN A., Do geographic distribution, niche property and life form explain plants’ vulnerability to global change? Glob. Change Biol. 12, 1079-1093, 2006.
  • 3. URETA C., MARTÍNEZ-MEYER E., PERALES H. R., ÁLVAREZ-BUYLLA E. R., Projecting the effects of climate change on the distribution of maize races and their wild relatives in Mexico. Glob. Change Biol., 18,1073-1082, 2012.
  • 4. CROSS M. S., ZAVALETA E. S., BACHELET D., BROOKS M. L., ENQUIST C. A., FLEISHMAN E., GRAUMLICH L. J., GROVES G. R., HANNAH L., HANSEN L., HAYWARD G., KOOPMAN M., LAWLER J. J., MALCOLM J., NORDGREN J., PETERSEN B., ROWLAND E. L., SCOTT D., SHAFER S. L., SHAW M. R., TAHOR G. M., The Adaptation for Conservation Targets (ACT) framework: a tool for incorporating climate change into natural resource management. Environ. Manage., 50, 341-351, 2012.
  • 5. FORDHAM D. A., RESIT AKÇAKAYA H., ARAÚJO M. B., ELITH J., KEITH D. A., PEARSON R., AULDA T. D., MELLIN C., MORGAN J. W., RRGAN T. J., TOZER M., WATTS M. J., WHITE M., WINTLE B. A., YATES C., BROOK B. W., Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming? Glob. Change Biol., 18, 1357-1371,2012.
  • 6. RODRIGUEZ E. C., DE SMET Y, CUESTA MOLINER C., GOETGHEBEUR P., SHARROCK S., GIBBS D., OLDFIELD S., KRAMER A., SAMAIN M., Gap analyses to support ex situ conservation of genetic diversity in Magnolia, a flagship plant group. Biodivers. Conserv., 22, 567-590, 2013.
  • 7. PRITCHARD D. J., FA J. E., OLDFIELD S., HARROP S. R., Bring the captive closer to the wild: redefining the role of ex situ conservation. Oryx. 46, 18-23, 2012.
  • 8. SUN J. C., CAO G. L., MA J., CHEN Y. F., HAN L. Z., Comparative genetic structure within single-origin pairs of rice (Oryza sativa L.) landraces from in situ and ex situ conservation programs in Yunnan of China using microsatellite markers. Genetic Genet. Resour. Crop Ev., 59, 1611-1623, 2012.
  • 9. FALEIRO F. V., MACHADO R. B., LOYOLA R. D., Defining spatial conservation priorities in the face of land- use and climate change. Bio. Conserv., 158, 248-257, 2013.
  • 10. ZHANG M. G., ZHOU Z. K., CHEN W. Y., SLIK J. W., CANNON C. H., RAES N., Using species distribution modeling to improve conservation and land use planning of Yunnan, China. Bio. Conserv., 153, 257-264, 2012.
  • 11. YU J., MA Y. H., GUO S. L., Modeling the geographic distribution of the epiphytic moss Macromitrium japonicum in China. Ann. Bot. Fenn., 50, 35-42, 2013.
  • 12. CRIMMINS S. M., DOBROWSKI S. Z., MYNSBERGE A. R., Evaluating ensemble forecasts of plant species distributions under climate change. Ecol. Model., 266, 126-130, 2013.
  • 13. LEACH K., ZALAT S., GILBERT F., Egypt’s Protected Area network under future climate change. Bio. Conserv., 159, 490-500, 2013.
  • 14. PHILLIPS S. J., DUDÍK M., Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161-175, 2008.
  • 15. HUMANS R. J., GRAHAM C. H., The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Change Biol., 12, 2272-2281, 2006.
  • 16. SCHWARZ A., MAIER W. A., KISTEMANN T., KAMPEN H., Analysis of the distribution of the tick Ixodes ricinus L. (Acari: Ixodidae) in a nature reserve of western Germany using Geographic Information Systems. Int. J. Hyg. Environ. Heal., 212, 87-96, 2009.
  • 17. DELANG C. O., WANG W., Chinese forest policies in the age of decentralisation (1978-1997). International Forestry Review 14, 13-26, 2012.
  • 18. CHEN C., LEI C., DENG A., QIAN C., HOOGMOED W., ZHANG W., Will higher minimum temperatures increase com production in Northeast China? An analysis of historical data over 1965-2008. Agr. Forest Meteorol., 151, 1580-1588, 2011.
  • 19. LIANG L., LI L., AND LIU Q., “Precipitation variability in Northeast China from 1961 to 2008,” J. Hydrol., 404, 67- 76, 2011.
  • 20. LI Q., LI W., SI P., XIAORONG G., DONG W., JONES P., HUANG J., GAO L., Assessment of surface air warming in northeast China, with emphasis on the impacts of urbanization. Theor. Appl. Climatol., 99, 469-478, 2010.
  • 21. GALLAGHER R. V., HUGHES L., LEISHMAN M. R., Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography 36, 531-540, 2012.
  • 22. GRAHAM N. E., CAYAN D. R., BROMIRSKI P. D., FLICK R. E., Multi-model projections of twenty-first century North Pacific winter wave climate under the IPCC A2 scenario. Clim. Dynam., 1-26, 2013.
  • 23. ALLOUCHE O., TSOAR A., KADMON R., Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Apply. Ecol., 43, 1223-1232, 2006.
  • 24. BALLARD G., JONGSOMJIT D., VELOZ S. D., AINLEY D. G., Coexistence of mesopredators in an intact polar ocean ecosystem: the basis for defining a Ross Sea marine protected area. Bio. Conserv., 156, 72-82, 2012.
  • 25. DI MININ E., MOILANEN A., Empirical evidence for reduced protection levels across biodiversity features from target-based conservation planning. Bio. Conserv., 153, 187-191, 2012.
  • 26. WILLIAMS S. J., JONES J. P., CLUBBE C., SHARROCK S., GIBBONS J. M., Why are some biodiversity policies implemented and others ignored? Lessons from the uptake of the Global Strategy for Plant Conservation by botanic gardens. Biodivers. Conserv., 21, 175-187, 2012.
  • 27. BAINI L., WU W. E. I., JUN M. A., RUNJIE Z., Maximum entropy niche-based modeling (Maxent) of potential geographical distributions of fruit flies Dacus bivittatus, D. ciliatus and D. vertebrates (Diptera: Tephritidae). Acta Entomol. Sinica, 52, 1122-1131, 2009.
  • 28. PEARSON R. G., DAWSON T. P., Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol. Biogeogr., 12, 361-371, 2003.
  • 29. PARMESAN C., BURROWS M. T., DUARTE C. M., POLOCZANSKA E. S., RICHARDSON A. J., SCHOEMAN D. S., SINGER M. C., Beyond climate change attribution in conservation and ecological research. Ecol. Lett., 16, 58-71, 2013.
  • 30. QUINTERO I., WIENS J. J., Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett., 16, 1095-1103, 2013.
  • 31. BARRETT S. C., KOHN J. R., FALK D. A., HOLSINGER K. E., Genetic and evolutionary consequences of small population size in plants: implications for conservation. Genetics and conservation of rare plants., 3-30, 1991.
  • 32. HONNAY O., JACQUEMYN H., AERTS R., Crop wild relatives: more common ground for breeders and ecologists. Frontiers in Ecology and the Environment 10, 121-121, 2012.
  • 33. LEÓN-LOBOS P., WAY M., ARANDA P. D., LIMA-JUNIOR M., The role of ex situ seed banks in the conservation of plant diversity and in ecological restoration in Latin America. Plant Ecology & Diversity 5, 245-258, 2012.
  • 34. SASS G. Z., WHEATLEY M., ALDRED D. A., GOULD A. J., CREED I. F., Defining protected area boundaries based on vascular-plant species richness using hydrological information derived from archived satellite imagery. Bio. Conserv., 147, 143-152, 2012.
  • 35. ENGELMANN F., ENGELS J. M. M., Technologies and strategies for ex situ conservation. Managing plant genetic diversity 89-103, 2002.
  • 36. MEILLEUR B. A., HODGKIN T., In situ conservation of crop wild relatives: status and trends. Biodivers. Conserv., 13, 663-684, 2004.
  • 37. NOSS R. F., From plant communities to landscapes in conservation inventories: a look at The Nature Conservancy (USA). Bio. Conserv., 41, 11-37,1987.
  • 38. MEYERSON L. A., PYŠEK P., Manipulating Alien Plant Species Propagule Pressure as a Prevention Strategy for Protected Areas. In Plant Invasions in Protected Areas; Springer: Netherlands, pp 473-486, 2013.
  • 39. BATTISTI C., Ecological network planning-from paradigms to design and back: a cautionary note. Journal of Land Use Science 8, 215-223, 2013.
  • 40. ZAPLATAM. K., WINTER S., FISCHER A., KOLLMANN J., ULRICH W., Species-driven phases and increasing structure in early-successional plant communities. The American Naturalist 181, E17-E27, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-649e0a69-7e89-4933-85d3-f7f045a3bcfa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.