PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 09 |

Tytuł artykułu

Exploitation of synthetic-derived wheats through osmotic stress responses for drought tolerance improvement

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The development of drought tolerant wheat cultivars has been slow due to lack of understanding the diagnostic physiological parameters associated with improved productivity under water stress. We evaluated responses to PEG induced osmotic stress under hydroponics in D-genome synthetic derived and bread wheat germplasm with the main aim to unravel and identify some promising attributes having role in stress tolerances. Genotypes used in this study differed in their morpho-physiological and biochemical attributes. Tolerant genotypes exhibited the ability to ameliorate harmful effects of PEG induced osmotic stress through better osmotic adjustment achieved through substantial relative water content (RWC), lowered osmotic potential, relatively stable root length having maximum water extraction capacity, significant increase in osmoprotectant concentration and relatively enhanced antioxidant activities. The results clearly revealed the importance of synthetic derivatives over check cultivars and conventional wheats in terms of osmotic stress responses. Interestingly, synthetic-derived advanced lines with Aegilops tauschii in its parentage including AWL-02, AWL-04 and AWL-07 proved superior over the best rainfed check cultivar (Wa-01). It was concluded that syntheticderived wheats has great potential to improve a range of stress adaptive traits. It could, therefore, be recommended to be a useful strategy for allowing modern bread wheat to become adapted to a wider range of environments in future climate change scenarios.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

09

Opis fizyczny

p.2453-2465,fig.,ref.

Twórcy

autor
  • Center for Plant Sciences and Biodiversity, University of Swat, Khyber Pakhtunkhwa, Pakistan
autor
  • Department of Botany, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
autor
  • Department of Biochemistry, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
autor
  • Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
autor
  • Center for Plant Sciences and Biodiversity, University of Swat, Khyber Pakhtunkhwa, Pakistan
autor
  • Department of Botany, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
autor
  • National University of Science and Technology (NUST), Islamabad, Pakistan
autor
  • Plant Biochemistry and Molecular Biology Lab, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
  • Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, China
  • National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan

Bibliografia

  • Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388
  • Alscher RG, Erturk N, Heatrh LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341
  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15
  • Arunyanark A, Jogloy S, Akkasaeng C, Vorasoot N, Nageswara RC, Kesmala T, Wright GC, Patanothai A (2008) Chlorophyll stability is an indicator of drought tolerance in peanut. J Agron Crop Sci 194:113–125
  • Ashraf MY, Naqvi MH, Khan AH (1996) Evaluation of four screening techniques for drought tolerance in wheat (Triticum aestivum L.). Acta Agron Hung 44:213–220
  • Bates LS, Waldren RP, Tear ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–286
  • Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton
  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111
  • Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. PNAS 102:3459–3464
  • Coue I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459
  • Dhana SS, Sethi GS, Behel RK (2002) Inheritance of seedling traits under drought stress conditions in bread wheat. Cereal Res Comm 30:293–300
  • Dhanda SS, Sethi GS, Behl RK (2004) Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci 190:6–12
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356
  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases. I. Occurrence in higher plants. Plant Physiol 59:309–314
  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930
  • Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress 5:1–23
  • Gorin N, Heidema FT (1976) Peroxidase activity in golden delicious apples as a possible parameter of ripening and senescence. J Agric Food Chem 24:200–201
  • Grzesiak S, Grzesiak MT, Filek W et al (2003) Evaluation of physiological screening tests for breeding drought resistant triticale (xTriticosecale Wittmack). Acta Physiol Plant 25:29–37
  • Hafid RE, Smith DH, Karrou M, Samir K (1998a) Morphological attributes associated with early-season drought tolerance in spring durum wheat in a mediterranean environment. Euphytica 101:273–282
  • Hafid RE, Smith DH, Karrou M, Samir K (1998b) Physiological responses of spring durum wheat cultivars to early-season drought in a Mediterranean environment. Ann Bot 81:363–370
  • Hixcox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334
  • Hsu SY, Hsu YT, Kao CH (2003a) The effect of polyethylene glycol on proline accumulation in rice leaves. Biol Plant 46:73–78
  • Hsu SY, Hsu YT, Kao CH (2003b) Ammonium ion, ethylene, and abscisic acid in polyethylene glycol-treated rice leaves. Biol Plant 46:239–242
  • IRRI (2007) CROPSTAT for Windows, Version 7.2 Metro Manila, Philippines
  • Izanloo A, Condon AG, Langridge P, Tester M, Schnurbusch T (2008) Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J Exp Bot 59:3327–3346
  • Jackson P, Rubertson M, Cupper M, Hammer G (1996) The role of physiological understanding in plant breeding from breeding perspective. Field Crops Res 49:11–37
  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487
  • Kirkegaard JA, Lilley JM, Howe GN, Graham JM (2007) Impact of subsoil water use on wheat yield. Aust J Agric Res 58:303–315
  • Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu P (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438
  • Larher F, Leport L, Petrivalsky M, Chappart M (1993) Effectors for the osmoinduced proline response in higher plants. Plant Physiol Biochem 31:911–922
  • Lorens GF, Bennett JM, Loggale LB (1987) Differences in drought resistance between two corn hybrids. II.Component analysis and growth rates. Agron J 79:808–813
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin-phenol reagent. J Boil Chem 193:265–275
  • Marcinska I, Czyczyło-Mysza I, Skrzypek E, Filek M, Dziurka M, Dziurka K, Waligorski P, Juzon K, Cyganek K, Grzesiak S (2013a) Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. Int J Mol Sci 14:13171–13193
  • Marcinska I, Czyczyło-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak MT, Janowiak F, Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie SA (2013b) Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiol Plant 35:451–461
  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498
  • Munns R, Weir R (1981) Contribution of sugars to osmotic adjustment in elongating and expanded zones of wheat leaves during moderate water deficits at two light levels. Aust J Plant Physiol 8:93–105
  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279
  • Nyachiro JM, Briggs KG, Hoddinott J, Johnson-Flanagan AM (2001) Chlorophyll content, chlorophyll fluorescence and water deficit in spring wheat. Cereal Res Commun 29:135–142
  • Pospisilova J, Batkova P (2004) Effects of pre-treatments with abscisic acid and/or benzyladenine on gas exchange of French bean, sugar beet, and maize leaves during water stress and after rehydration. Biol Plant 48:395–399
  • Raziuddin Swati ZA, Bakht J, Farhatullah Ullah N, Shafi M, Akmal M, Hassan G (2010) In situ assessment of morpho-physiological response of wheat (Triticum aestivum L.) genotypes to drought. Pak J Bot 42:3183–3195
  • Reynolds M, Dreccer F, Trethowan R (2007) Drought adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186
  • Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:157–166
  • Sainio P, Makela P (1995) Comparison of physiological methods to assess drought tolerance in oats. Acta Agric Scand Sect B Soil Plant Sci 45:32–38
  • Salekjalali M, Haddad R, Jafari B (2012) Effects of soil water shortages on the activity of antioxidant enzymes and the contents of chlorophylls and proteins in barley. Am Eur J Agric Environ Sci 12:57–63
  • Sayar R, Khemira H, Kameli A, Mosbahi M (2008) Physiological tests as predictive appreciation for drought tolerance in durum wheat (Triticum durum Desf.). Agron Res 6:79–90
  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341
  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417
  • StatSoft Inc. (2004) STATISTICA (data analysis software system), version 7. www.statsoft.com
  • Stephen PL, Siddique KHM (1994) Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv Agron 46:229–276
  • Taiz L, Zeiger E (2006) Stress physiology, 4th edn. Sinauer Asssociaes Inc, MA, pp 671–702
  • Tambussi EA, Bartoli CG, Beltrano J, Guimet JJ, Araus JL (2000) Oxidative damage to thylakoid proteins in winter stressed leaves of wheat. Physiol Plant 108:398–404
  • Tatar O, Gevrek MN (2008) Influence of water stress on proline accumulation, lipid peroxidation and water content of wheat. Asian J Plant Sci 7:409–412
  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366
  • Turner NC, Wright GC, Siddique KHM (2001) Adaptation of grain legume to water limited environments. Adv Agron 71:193–231
  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759
  • Vetter JL, Steinberg MP, Nelson AI (1958) Quantitative determination of peroxidase in sweet corn. J Agric Food Chem 6:39–41
  • Winter SR, Musick JT, Porter KB (1988) Evaluation of screening techniques for breeding droughtresistant winter wheat. Crop Sci 28:512–516
  • Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001) Drought and heat responses in the wild wheat relative Aegilops geniculata Roth. Crop Sci 41:1321–1329
  • Zgallai H, Steppe K, Lemeur R (2005) Photosynthetic, physiological and biochemical responses of tomato plants to polyethylene glycol-induced water deficit. J Integr Plant Biol 47:1470–1478
  • Zhang JX, Kirham MB (1994) Drought stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791
  • Zhang J, Blum A, Nguyen HT (1999) Genetic analysis of osmotic adjustment in crops. J Exp Bot 50:291–302
  • Zhu JK, Hasegawa PM, Bressen RA (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16:253–277

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-647c8b75-0371-4815-8d35-ef4e14f33016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.