PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 11 |

Tytuł artykułu

Accumulation dynamics of seed tocopherols in sunflower lines with modified tocopherol levels

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Sunflower (Helianthus annuus L.) seeds have a tocopherol profile dominated by alpha-tocopherol. The objective of this research was to study the dynamics of tocopherol accumulation in sunflower lines with altered total tocopherol content or tocopherol profile. Developing seeds were sampled at regular intervals in two lines with reduced and increased total tocopherol content, respectively, and six lines with modified tocopherol profiles. The line with reduced tocopherol content showed a tocopherol accumulation rate reduced by half, whereas the line with increased tocopherol content showed a tocopherol accumulation rate twofold higher than the control. In the three cases, alpha-tocopherol followed a sigmoid accumulation pattern. Modified tocopherol profiles were expressed at early stages of tocopherol accumulation. In most lines with modified profiles, tocopherol accumulation pattern differed from the alpha-tocopherol lines, with maximum tocopherol content at 18 or 21 days after flowering (DAF) that was reduced to reach a plateau from 33 or 36 DAF onward. Such a reduction was caused by continued dry matter accumulation after tocopherol accumulation ceased or slowed down. In lines with increased levels of beta-tocopherol or both gamma- and delta-tocopherol, the synthesis of beta- and delta-tocopherol started and stopped earlier than the synthesis of alpha- and gamma-tocopherol, respectively.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

11

Opis fizyczny

p.3157-3165,fig.,ref.

Twórcy

autor
  • Institute for Sustainable Agriculture (CSIC), Alameda del Obispo s/n, 14004 Co´rdoba, Spain
  • Institute for Sustainable Agriculture (CSIC), Alameda del Obispo s/n, 14004 Co´rdoba, Spain
  • Institute for Sustainable Agriculture (CSIC), Alameda del Obispo s/n, 14004 Co´rdoba, Spain
autor
  • Institute for Sustainable Agriculture (CSIC), Alameda del Obispo s/n, 14004 Co´rdoba, Spain

Bibliografia

  • Chen S, Li H, Liu G (2006) Progress of vitamin E metabolic engineering in plants. Transgenic Res 15:655–665
  • Collakova E, Dellapenna D (2003) Homogentisate phytyltransferase activity is limiting fortocopherol biosynthesis in arabidopsis. Plant Physiol 131:632–642
  • Del Moral L, Fernández-Martinez JM, Velasco L, Pérez-Vich B (2012) Quantitative trait loci for seed tocopherol content in sunflower. Crop Sci 52:786–794
  • Demurin Y, Škorić D, Karlovic D (1996) Genetic variability of tocopherol composition in sunflower seeds as a basis of breeding for improved oil quality. Plant Breeding 115:33–36
  • Dong G, Liu X, Chen Z, Pan W, Li H, Liu G (2007) The dynamics of tocopherol and the effect of high temperature in developing sunflower (Helianthus annuus L.) embryo. Food Chem 102:138–145
  • Garcia-Moreno M, Vera-Ruiz EM, Fernández-Martinez JM, Velasco L, Pérez-Vich B (2006) Genetic and molecular analysis of high gamma-tocopherol content in sunflower. Crop Sci 46:2015–2021
  • Goffman FD, Velasco L, Thies W (1999a) Quantitative determination of tocopherols in single seeds of rapeseed (Brassica napus L.). Fett/Lipid 101:142–145
  • Goffman FD, Velasco L, Becker HC (1999b) Tocopherols accumulation in developing seeds and pods of rapeseed (Brassica napus L.). Fett/Lipid 101:400–403
  • Haddadi P, Ebrahimi A, Langlade NB, Yazdi-Samadi B, Berger M, Calmon A, Naghavi MR, Vincourt P, Sarrafi A (2012) Genetic dissection of tocopherol and phytosterol in recombinant inbred lines of sunflower through quantitative trait locus analysis and the candidate gene approach. Mol Breeding 29:717–729
  • Hass CG, Tang S, Leonard S, Traber MG, Miller JF, Knapp SJ (2006) Three non-allelic epistatically interacting methyltransferase mutations produce novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113:767–782
  • Horvath G, Wessjohann L, Bigirimana J, Monica H, Jansen M, Guisez Y, Caubergs R, Horemans N (2006) Accumulation of tocopherols and tocotrienols during seed development of grape (Vitis vinifera L. cv. Albert Lavalle´e). Plant Physiol Biochem 44:724–731
  • Hunter SC, Cahoon EB (2007) Enhancing vitamin E in oilseeds: unraveling tocopherol and tocotrienol biosynthesis. Lipids 42: 97–108
  • Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701
  • Kanwischer M, Porfirova S, Bergmüller E, Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137: 713–723
  • Marmesat S, Velasco L, Ruiz-Méndez MV, Fernández-Martinez JM, Dobarganes C (2008) Thermostability of genetically modified sunflower oils differing in fatty acid and tocopherol compositions. Eur J Lipid Sci Technol 110:776–782
  • Méne-Saffrane´ L, DellaPenna D (2010) Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiol Biochem 48:301–309
  • Padley FB, Gunstone FD, Harwood JL (1994) Occurrence and characteristics of oils and fats. In: Gunstone FD, Harwood JL, Padley FB (eds) The lipid handbook. Chapman and Hall, London, pp 47–223
  • Pongracz G, Weiser H, Matzinger D (1995) Tocopherole. Antioxidantien der Natur. Fat Sci Technol 97:90–104
  • Porfirova S, Bergmüller E, Tropf S, Lemke R, Dörmann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99:12495–12500
  • Raclaru M, Gruber J, Kumar R, Sadre R, Lühs W, Karim Zarhloul M, Friedt W, Frentzen M, Weier D (2006) Increase of the tocochromanol content in transgenic Brassica napus seeds by overexpression of key enzymes involved in prenylquinone biosynthesis. Mol Breeding 18:93–107
  • Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16:1419–1432
  • Tang S, Hass CG, Knapp SJ (2006) Ty3/Gypsy-like retrotransposon knockout of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase is non-lethal, uncovers a cryptic paralogous mutation, and produces novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113:783–799
  • Traber MG (2007) Vitamin E regulatory mechanisms. Ann Rev Nutr 27:347–362
  • Tsegaye Y, Shintani DK, DellaPenna D (2002) Overexpression of the enzyme p-hydroxyphenolpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol Biochem 40:913–920
  • USDA-ARS (2012) National nutrient database for standard reference, release 25. Nutrient data laboratory home page. http://www.ars.usda.gov/Services/docs.htm?docid=8964. Accessed 19 Nov 2012
  • Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ, Last RL (2006) The Arabidopsis vitamin E pathway gene5–1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224
  • Velasco L, Dominguez J, Fernández-Martinez JM (2004a) Registration of T589 and T2100 sunflower germplasms with modified tocopherol profiles. Crop Sci 44:361–362
  • Velasco L, Perez-Vich B, Fernández-Martinez JM (2004b) Novel variation for tocopherol profile in a sunflower created by mutagenesis and recombination. Plant Breeding 123:490–492
  • Velasco L, Rojas-Barros P, Fernández-Martinez JM (2005) Fatty acid and tocopherol accumulation in the seeds of a high oleic acid castor mutant. Ind Crops Prod 22:201–206
  • Velasco L, Del Moral L, Pérez-Vich B, Fernández-Martinez JM (2010) Selection for contrasting seed tocopherol content in sunflower seeds. J Agric Sci 148:393–400
  • Vera-Ruiz EM, Velasco L, Leon AJ, Fernández-Martinez JM, Pérez-Vich B (2006) Genetic mapping of the Tph1 gene controlling beta-tocopherol accumulation in sunflower seeds. Mol Breeding 17:291–296
  • Wang X, Song Y, Li J (2013) High expression of tocochromanol biosynthesis genes increases the vitamin E level in a new line of giant embryo rice. J Agric Food Chem. doi:10.1021/jf401325e

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-63c8cf27-7997-4731-bb2a-cff8b55ba2c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.