PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 65 | 1 |

Tytuł artykułu

Immunomodulatory influence of HIV and EBV on Helicobacter pylori infections - a review

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Helicobacter pylori is a Gram-negative, microaerophilic rod colonizing the stomach mucosa. In most cases, the colonization of this organ is asymptomatic, while some people may develop diseases, including gastritis, peptic ulcers and gastric cancers. The infection caused by H. pylori is accompanied by the secretion of pro-inflammatory cytokines and the strong response of Th₁/Th₁₇ cells. Because this bacterium colonizes more than half of the human population, co-infections with other pathogens are a relatively common phenomenon. One of such etiological factors are viruses that have an immunomodulatory effect on the infection caused by this microorganism. The relationship between H. pylori and HIV is antagonistic because there is an inverse relationship between the occurrence of this virus and the presence of H. pylori-dependent inflammations of the stomach. This is most probably caused by the HIV-related shift from a Th₁ to a Th₂ response and the reduction in Th₁₇ cell counts. The reverse, synergistic interaction was demonstrated between H. pylori and EBV. Both of these pathogens are responsible for the recruitment of immune cells with a pro-inflammatory activity leading to the induction of gastric inflammation. The presence of the pro-inflammatory environment in the stomach supports the multiplication of both pathogens by maintaining H. pylori in the form of metabolically active, spiral forms and switching EBV from a latent into lytic phase. This review article discusses the epidemiology, pathophysiology and clinical consequences of H. pylori co-infection with HIV and EBV.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

65

Numer

1

Opis fizyczny

p.3-17,fig.,ref.

Twórcy

autor
  • Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego St. 4, 50-368 Wroclaw, Poland
autor
  • Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego St. 4, 50-368 Wroclaw, Poland

Bibliografia

  • [1] Krzyżek P., Biernat M.M., Gościniak G. 2018. Intensive formation of coccoid forms as a feature strongly associated with highly pathogenic Helicobacter pylori strains. Folia Microbiologica [Epub ahead of print] doi:10.1007/s12223-018-0665-5
  • [2] Hooi J.K.Y., Lai W.Y., Ng W.K., Suen M.M.Y., Underwood F.E., Tanyingoh D., Malfertheiner P., Graham D.Y., Wong V.W.S., Wu J.C.Y., Chan F.K.L., Sung J.J.Y., Kaplan G.G., Ng S.C. 2017. Global prevalence of Helicobacter pylori infection: Systematic review and meta-analysis. Gastroenterology 153: 420-429. doi:10.1053/j.gastro.2017.04.022
  • [3] Bauer S., Krumbiegel P., Richter M., Richter T., Röder S., Rolle-Kampczyk U., Herbarth O. 2011. Influence of sociodemographic factors on Helicobacter pylori prevalence variability among schoolchildren in Leipzig, Germany. A long-term follow-up study. Central European Journal of Public Health 19: 42-45.
  • [4] Sitas F., Forman D., Yarnell J.W., Burr M.L., Elwood P.C., Pedley S., Marks K.J. 1991. Helicobacter pylori infection rates in relation to age and social class in a population of Welsh men. Gut 32: 25-28.
  • [5] Malcolm C.A., MacKay W.G., Shepherd A., Weaver L.T. 2004. Helicobacter pylori in children is strongly associated with poverty. Scottish Medical Journal 49: 136-138. https://doi.org/10.1177/003693300404900406
  • [6] Malaty H.M., Graham D.Y. 1994. Importance of childhood socioeconomic status on the current prevalence of Helicobacter pylori infection. Gut 35: 742-745.
  • [7] Moayyedi P., Axon A.T.R., Feltbower R., Duffett S., Crocombe W., Braunholtz D., Richards I.D., Dowell A.C., Forman D., Leeds HELP Study Group. 2002. Relation of adult lifestyle and socioeconomic factors to the prevalence of Helicobacter pylori infection. The International Journal of Epidemiology 31: 624-631.
  • [8] Cilla G., Pérez-Trallero E., García-Bengoechea M., Marimón J.M., Arenas J.I. 1997. Helicobacter pylori infection: A seroepidemiological study in Gipuzkoa, Basque Country, Spain. European Journal of Epidemiology 13: 945-949.
  • [9] Bücker R., Azevedo-Vethacke M., Groll C., Garten D., Josenhans C., Suerbaum S., Schreiber S. 2012. Helicobacter pylori colonization critically depends on postprandial gastric conditions. Scientific Reports 2: 994. https://doi.org/10.1038/srep00994
  • [10] Pérez-Pérez G.I., Sack R.B., Reid R., Santosham M., Croll J., Blaser M.J. 2003. Transient and persistent Helicobacter pylori colonization in Native American children. Journal of Clinical Microbiology 41: 2401-2407.
  • [11] Sobala G.M., Crabtree J.E., Dixon M.F., Schorah C.J., Taylor J.D., Rathbone B.J., Heatley R.V., Axon A.T. 1991. Acute Helicobacter pylori infection: Clinical features, local and systemic immune response, gastric mucosal histology, and gastric juice ascorbic acid concentrations. Gut 32: 1415-1418.
  • [12] Asaka M., Kato M., Kudo M., Meguro T., Kimura T., Miyazaki T., Inoue K. 1993. The role of Helicobacter pylori in peptic ulcer disease. Gastroenterologia Japonica 28: 163-167.
  • [13] Parsonnet J., Friedman G.D., Vandersteen D.P., Chang Y., Vogelman J.H., Orentreich N., Sibley R.K. 1991. Helicobacter pylori infection and the risk of gastric carcinoma. The New England Journal of Medicine 325: 1127-1131. doi.org/10.1056/NEJM199110173251603
  • [14] Bouzourene H., Haefliger T., Delacretaz F., Saraga E. 1999. The role of Helicobacter pylori in primary gastric MALT lymphoma. Histopathology 34: 118-123.
  • [15] Scott Algood H.M., Gallo-Romero J., Wilson K.T., Peek R.M., Cover T.L. 2007. Host response to Helicobacter pylori infection before initiation of the adaptive immune response. FEMS Immunology and Medical Microbiology 51: 577-586.
  • [16] Kivrak Salim D., Sahin M., Köksoy S., Adanir H., Süleymanlar I. 2016. Local immune response in Helicobacter pylori infection. Medicine 95: e3713. https://doi.org/10.1097/ MD.0000000000003713
  • [17] Bamford K.B., Fan X., Crowe S.E., Leary J.F., Gourley W.K., Luthra G.K., Brooks E.G., Graham D.Y., Reyes V.E., Ernst P.B. 1998. Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology 114: 482-492.
  • [18] Bettelli E., Carrier Y., Gao W., Korn T., Strom T.B., Oukka M., Weiner H.L., Kuchroo V.K. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235-238. https://doi.org/10.1038/nature04753
  • [19] Mangan P.R., Harrington L.E., O’Quinn D.B., Helms W.S., Bullard D.C., Elson C.O., Hatton R.D., Wahl S.M., Schoeb T.R., Weaver C.T. 2006. Transforming growth factor-β induces development of the TH17 lineage. Nature 441: 231-234. doi:10.1038/nature04754
  • [20] Ek C., Whary M.T., Ihrig M., Bravo L.E., Correa P., Fox J.G. 2012. Serologic evidence that Ascaris and Toxoplasma infections impact inflammatory responses to Helicobacter pylori in Colombians. Helicobacter 17: 107-115. https://doi.org/10.1111/j.1523-5378.2011.00916.x
  • [21] Misra V., Misra S.P., Dwivedi M., Singh P.A. 2006. Giardia lamblia trophozoites in gastric biopsies. The Indian Journal of Pathology and Microbiology 49: 519-523.
  • [22] Whary M.T., Muthupalani S., Ge Z., Feng Y., Lofgren J., Shi H.N., Taylor N.S., Correa P., Versalovic J., Wang T.C., Fox J.G. 2014. Helminth coinfection in Helicobacter pylori infected INS-GAS mice attenuates gastric premalignant lesions of epithelial dysplasia and glandular atrophy and preserves colonization resistance of the stomach to lower bowel microbiota. Microbes and Infection 16: 345-355. https://doi.org/10.1016/j.micinf.2014.01.005
  • [23] Fox J.G., Beck P., Dangler C.A., Whary M.T., Wang T.C., Shi H.N., Nagler-Anderson C. 2000. Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces Helicobacter-induced gastric atrophy. Nature Medicine 6: 536-542. https://doi.org/10.1038/75015
  • [24] Krzyżek P., Gościniak G. 2017. Frequency and immunological consequences of Helicobacter pylori and intestinal parasite co-infections: A brief review. Annals of Parasitology 63: 255-263. https://doi.org/10.17420/ap6304.112
  • [25] Radovanović A.S., Brmbolić B., Stojšić Z., Pekmezović T., Bukumirić Z., Korać M., Salemović D., Pešić-Pavlović I., Stevanović G., Milošević I., Jevtović D. 2017. The increasing prevalence of HIV/Helicobacter pylori co-infection over time, along with the evolution of antiretroviral therapy (ART). PeerJ 5: e3392. https://doi.org/10.7717/peerj.3392
  • [26] Peeters M., Courgnaud V., Abela B., Auzel P., Pourrut X., Bibollet-Ruche F., Loul S., Liegeois F., Butel C., Koulagna D., Mpoudi-Ngole E., Shaw G.M., Hahn B.H., Delaporte E. 2002. Risk to human health from a plethora of simian immunodeficiency viruses in primate bushmeat. Emerging Infectious Diseases 8: 451-457. https://doi.org/10.3201/eid0805.010522
  • [27] Wang S., Hottz P., Schechter M., Rong L. 2015. Modeling the slow CD4+ T cell decline in HIVinfected individuals. PLOS Computational Biology 11: e1004665. https://doi.org/10.1371/journal.pcbi.1004665
  • [28] World Health Organization. 2002. Scaling up antiretroviral therapy in resource-limited settings. Guidelines for a public health approach.
  • [29] Vieira J., Frank E., Spira T.J., Landesman S.H. 1983. Acquired immune deficiency in Haitians: Opportunistic infections in previously healthy Haitian immigrants. The New England Journal of Medicine 308: 125-129. https://doi.org/10.1056/NEJM 198301203080303
  • [30] Small C.B., Klein R.S., Friedland G.H., Moll B., Emeson E.E., Spigland I. 1983. Community-acquired opportunistic infections and defective cellular immunity in heterosexual drug abusers and homosexual men. The American Journal of Medicine 74: 433-441.
  • [31] Meintjes G., Moorhouse M.A., Carmona S., Davies N., Dlamini S., van Vuuren C., Manzini T., Mathe M., Moosa Y., Nash J., Nel J., Pakade Y., Woods J., Van Zyl G., Conradie F., Venter F. 2017. Adult antiretroviral therapy guidelines 2017. Southern African Journal of HIV Medicine 18: 776. https://doi.org/10.4102/sajhivmed.v18i1.776
  • [32] Finzi D., Blankson J., Siliciano J.D., Margolick J.B., Chadwick K., Pierson T., Smith K., Lisziewicz J., Lori F., Flexner C., Quinn T.C., Chaisson R.E., Rosenberg E., Walker B., Gange S., Gallant J., Siliciano R.F. 1999. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Medicine 5: 512-517. https://doi.org/10.1038/8394
  • [33] Chun T., Nickle D.C., Justement J.S., Meyers J.H., Roby G., Hallahan C.W., Kottilil S., Moir S., Mican J.M., Mullins J.I., Ward D.J., Kovacs J.A., Mannon P.J., Fauci A.S. 2008. Persistence of HIV in gutassociated lymphoid tissue despite long-term antiretroviral therapy. The Journal of Infectious Diseases 197: 714-720. https://doi.org/10.1086/527324
  • [34] Cusini A., Vernazza P.L., Yerly S., Decosterd L.A., Ledergerber B., Fux C.A., Rohrbach J., Widmer N., Hirschel B., Gaudenz R., Cavassini M., Klimkait T., Zenger F., Gutmann C., Opravil M., Günthard H.F., Swiss HIV Cohort Study. 2013. Higher CNS penetration-effectiveness of long-term combination antiretroviral therapy is associated with better HIV-1 viral suppression in cerebrospinal fluid. Journal of Acquired Immune Deficiency Syndromes 62: 28-35. https://doi.org/10.1097/QAI.0b013e318274e2b0
  • [35] Bui D., Brown H.E., Harris R.B., Oren E. 2016. Serologic evidence for fecal-oral transmission of Helicobacter pylori. The American Journal of Tropical Medicine and Hygiene 94: 82-88. https://doi.org/10.4269/ajtmh.15-0297
  • [36] Foluso A.F. 2010. HIV/AIDS and personal decision making about sex among men in Nigeria. The Procedia - Social and Behavioral Sciences 5: 2385-2393.
  • [37] Taha T.E., Kumwenda J., Cole S.R., Hoover D.R., Kafulafula G., Fowler M.G., Thigpen M.C., Li Q., Kumwenda N.I., Mofenson L. 2009. Postnatal HIV 1 transmission after cessation of infant extended antiretroviral prophylaxis and effect of maternal highly active antiretroviral therapy. The Journal of Infectious Diseases 200: 1490-1497. https://doi.org/10.1086/644598
  • [38] Kumakech E., Achora S., Berggren V., Bajunirwe F. 2011. Occupational exposure to HIV: A conflict situation for health workers. International Nursing Review 58: 454-462. https://doi.org/10.1111/j.1466-7657.2011.00887.x
  • [39] Fialho A.B., Braga-Neto M.B., Guerra E.J., Fialho A.M., Fernandes K.C., Sun J.L., Takeda C.F., Silva C.I., Queiroz D.M., Braga L.L. 2011. Low prevalence of H. pylori infection in HIV-positive patients in the northeast of Brazil. BMC Gastroenterology 11: 13. https://doi.org/10.1186/1471-230X-11-13
  • [40] Olmos M., Araya V., Pskorz E., Quesada E.C., Concetti H., Perez H., Cahn P. 2004. Coinfection: Helicobacter pylori/human immunodeficiency virus. Digestive Diseases and Sciences 49: 1836-1839.
  • [41] Mach T., Skwara P., Biesiada G., Cieśla A., Macura A. 2007. Morphological changes of the upper gastrointestinal tract mucosa and Helicobacter pylori infection in HIV-positive patients with severe immunodeficiency and symptoms of dyspepsia. Medical Science Monitor 13: CR14-9.
  • [42] AliMohamed F., Lule G.N., Nyong’o A., Bwayo J., Rana F.S. 2002. Prevalence of Helicobacter pylori and endoscopic findings in HIV seropositive patients with upper gastrointestinal tract symptoms at Kenyatta National Hospital, Nairobi. East African Medical Journal 79: 226-231.
  • [43] Eberhardt K.A., Sarfo F.S., Dompreh A., Kuffour E.O., Geldmacher C., Soltau M., Schachscheider M., Drexler J.F., Eis-Hübinger A.M., Häussinger D., Bedu-Addo G., Phillips R.O., Norman B., Burchard G.D., Feldt T. 2015. Helicobacter pylori coinfection is associated with decreased markers of immune activation in ART-naive HIV-positive and in HIVnegative individuals in Ghana. Clinical Infectious Diseases 61: 1615-1623. https://doi.org/10.1093/cid/civ577
  • [44] Lv F.J., Luo X.L., Meng X., Jin R., Ding H.G., Zhang S.T. 2007. A low prevalence of H. pylori and endoscopic findings in HIV-positive Chinese patients with gastrointestinal symptoms. World Journal of Gastroenterology 13: 5492-5496.
  • [45] Cacciarelli A.G., Marano B.J., Gualtieri N.M., Zuretti A.R., Torres R.A., Starpoli A.A., Robilotti J.G. Jr. 1996. Lower Helicobacter pylori infection and peptic ulcer disease prevalence in patients with AIDS and suppressed CD4 counts. The American Journal of Gastroenterology 91: 1783-1784.
  • [46] Nkuize M., De Wit S., Muls V., Ntounda R., Gomez-Galdon M., Buset M. 2012. Comparison of demographic characteristics and upper gastrointestinal endoscopy findings in HIV-positive, antiretroviraltreated patients with and without Helicobacter pylori coinfection. Helicobacter 17: 153-159. https://doi.org/10.1111/j.1523-5378.2011.00929.x
  • [47] Benz J., Hasbach H., Brenden M., Eidt S., Fätkenheuer G., Schrappe M., Geisel J., Goossens H., Mauff G. 1993. Humoral and cellular immunity in HIV positive and HIV negative Helicobacter pylori infected patients. Zentralblatt für Bakteriologie 280: 186-196.
  • [48] Edwards P.D., Carrick J., Turner J., Lee A., Mitchell H., Cooper D.A. 1991. Helicobacter pylori-associated gastritis is rare in AIDS: Antibiotic effect or a consequence of immunodeficiency? The American Journal of Gastroenterology 86: 1761-1764.
  • [49] Shiota S., Reddy R., Alsarraj A., El-Serag H.B., Graham D.Y. 2015. Antibiotic resistance of Helicobacter pylori among male United States veterans. Clinical Gastroenterology and Hepatology 13: 1616-1624. https://doi.org/10.1016/j.cgh.2015.02.005
  • [50] Raymond J., Lamarque D., Kalach N., Chaussade S., Burucoa C. 2010. High level of antimicrobial resistance in French Helicobacter pylori isolates. Helicobacter 15: 21-27. https://doi.org/10.1111/j.1523-5378.2009.00737.x
  • [51] Shokrzadeh L., Alebouyeh M., Mirzaei T., Farzi N., Zali M.R. 2015. Prevalence of multiple drug-resistant Helicobacter pylori strains among patients with different gastric disorders in Iran. Microbial Drug Resistance 21: 105-110. doi:10.1089/mdr.2014.0081
  • [52] Di Giulio M., Di Campli E., Di Bartolomeo S., Cataldi V., Marzio L., Grossi L., Ciccaglione A.F., Nostro A., Cellini L. 2016. In vitro antimicrobial susceptibility of Helicobacter pylori to nine antibiotics currently used in Central Italy. Scandinavian Journal of Gastroenterology 51: 263-269. https://doi.org/10.3109/ 00365521.2015.1092577
  • [53] Nkuize M., De Wit S., Muls V., Delforge M., Miendje Deyi V.Y., Cadière G.B., Buset M. 2015. HIVHelicobacter pylori co-Infection: Antibiotic resistance, prevalence, and risk factors. PLoS One 10: e0145119. https://doi.org/10.1371/journal.pone.0145119
  • [54] Kirschner D.E., Blaser M.J. 1995. The dynamics of Helicobacter pylori infection of the human stomach. The Journal of Theoretical Biology 176: 281-290.
  • [55] Aihara E., Closson C., Matthis A.L., Schumacher M.A., Engevik A.C., Zavros Y., Ottemann K.M., Montrose M.H. 2014. Motility and chemotaxis mediate the preferential colonization of gastric injury sites by Helicobacter pylori. PLoS Pathogens 10: e1004275. https://doi.org/10.1371/journal.ppat.1004275
  • [56] Papini E., Satin B., Norais N., de Bernard M., Telford J.L., Rappuoli R., Montecucco C. 1998. Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. Journal of Clinical Investigation 102: 813-820. https://dx.doi.org/10.1172/JCI2764
  • [57] Amieva M.R., Vogelmann R., Covacci A., Tompkins L.S., Nelson W.J., Falkow S. 2003. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300: 1430-1434. https://doi.org/10.1126/science.1081919
  • [58] Song X., Chen H.X., Wang X.Y., Deng X.Y., Xi Y.X., He Q., Peng T.L., Chen J., Chen W., Wong B.C., Chen M.H. 2013. H. pylori-encoded CagA disrupts tight junctions and induces invasiveness of AGS gastric carcinoma cells via Cdx2-dependent targeting of Claudin-2. Cellular Immunology 286: 22-30. https://doi.org/10.1016/j.cellimm.2013.10.008
  • [59] Hoy B., Löwer M., Weydig C., Carra G., Tegtmeyer N., Geppert T., Schröder P., Sewald N., Backert S., Schneider G., Wessler S. 2010. Helicobacter pylori HtrA is a new secreted virulence factor that cleaves Ecadherin to disrupt intercellular adhesion. EMBO Reports 11: 798-804. https://doi.org/10.1038/embor.2010.114
  • [60] Shi Y., Liu X.F., Zhuang Y., Zhang J.Y., Liu T., Yin Z., Wu C., Mao X.H., Jia K.R., Wang F.J., Guo H., Flavell R.A., Zhao Z., Liu K.Y., Xiao B., Guo Y., Zhang W.J., Zhou W.Y., Guo G., Zou Q.M. 2010. Helicobacter pylori-induced Th17 responses modulate Th1 cell responses, benefit bacterial growth, and contribute to pathology in mice. The Journal of Immunology 184: 5121-5129. https://doi.org/10.4049/jimmunol.0901115
  • [61] Bagheri N., Razavi A., Pourgheysari B., Azadegan-Dehkordi F., Rahimian G., Pirayesh A., Shafigh M., Rafieian-Kopaei M., Fereidani R., Tahmasbi K., Shirzad H. 2018. Up-regulated Th17 cell function is associated with increased peptic ulcer disease in Helicobacter pylori-infection. Infection, Genetics and Evolution 60: 117-125. https://doi.org/10.1016/j.meegid.2018.02.020
  • [62] Gray B.M., Fontaine C.A., Poe S.A., Eaton K.A. 2013. Complex T cell interactions contribute to Helicobacter pylori gastritis in mice. Infection and Immunity 81: 740-752. https://doi.org/10.1128/IAI.01269-12
  • [63] Bagheri N., Shirzad H., Elahi S., Azadegan-Dehkordi F., Rahimian G., Shafigh M., Rashidii R., Sarafnejad A., Rafieian-Kopaei M., Faridani R., Tahmasbi K., Kheiri S., Razavi A. 2017. Downregulated regulatory T cell function is associated with increased peptic ulcer in Helicobacter pylori-infection. Microbial Pathogenesis 110: 165-175. https://doi.org/10.1016/j.micpath.2017.06.040
  • [64] Adamsson J., Ottsjö L.S., Lundin S.B., Svennerholm A.M., Raghavan S. 2017. Gastric expression of IL-17A and IFNγ in Helicobacter pylori infected individuals is related to symptoms. Cytokine 99: 30-34. https://doi.org/10.1016/j.cyto.2017.06.013
  • [65] Horvath D.J., Washington M.K., Cope V.A., Algood H.M.S. 2012. IL-23 contributes to control of chronic Helicobacter pylori infection and the development of T helper responses in a mouse model. Frontiers in Immunology 3: 56. https://doi.org/10.3389/fimmu.2012.00056
  • [66] Ismail A.S., Valastyan J.S., Bassler B.L. 2016. A host-produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host and Microbe 19: 470-480. https://doi.org/10.1016/j.chom.2016.02.020
  • [67] Rader B.A., Wreden C., Hicks K.G., Sweeney E.G., Ottemann K.M., Guillemin K. 2011. Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB. Microbiology 157: 2445-2455. https://doi.org/10.1099/mic.0.049353-0
  • [68] Anderson J.K., Huang J.Y., Wreden C., Sweeney E.G., Goers J., Remington S.J., Guillemina K. 2015. Chemorepulsion from the quorum signal autoinducer-2 promotes Helicobacter pylori biofilm dispersal. MBio 6: e00379.
  • [69] Krzyżek P., Gościniak G. 2018. A proposed role for diffusible signal factors in the biofilm formation and morphological transformation of Helicobacter pylori. Turkish Journal of Gastroenterology 29: 7-13. https://doi.org/10.5152/tjg.2017.17349
  • [70] Collins K.D., Andermann T.M., Draper J., Sanders L., Williams S.M., Araghi C., Ottemann K.M. 2016. The Helicobacter pylori CZB cytoplasmic chemoreceptor TlpD forms an autonomous polar chemotaxis signaling complex that mediates a tactic response to oxidative stress. Journal of Bacteriology 198: 1563-1575. doi:10.1128/JB.00071-16
  • [71] Clerici M., Shearer G.M. 1994. The Th1–Th2 hypothesis of HIV infection: New insights. Immunology Today 15: 575-581.
  • [72] Klein S.A., Dobmeyer J.M., Dobmeyer T.S., Pape M., Ottmann O.G., Helm E.B., Hoelzer D., Rossol R. 1997. Demonstration of the Th1 to Th2 cytokine shift during the course of HIV-1 infection using cytoplasmic cytokine detection on single cell level by flow cytometry. AIDS 11: 1111-1118.
  • [73] Kaur R., Singh Dhakad M., Goyal R., Bhalla P., Dewan R. 2016. Study of TH1/TH2 cytokine profiles in HIV/AIDS patients in a tertiary care hospital in India. Journal of Medical Microbiology and Diagnosis 5: 214. doi:10.4172/2161-0703.1000214
  • [74] Koirala J., Adamski A., Koch L., Stueber D., El-Azizi M., Khardori N.M., Ghassemi M., Novak R.M. 2008. Interferon-gamma receptors in HIV-1 infection. AIDS Research and Human Retroviruses 24: 1097-1102. https://doi.org/10.1089/aid.2007.0261
  • [75] Prendergast A., Prado J.G., Kang Y.H., Chen F., Riddell L.A., Luzzi G., Goulder P., Klenerman P. 2010. HIV-1 infection is characterized by profound depletion of CD161+ Th17 cells and gradual decline in regulatory T cells. AIDS 24: 491-502. https://doi.org/10.1097/QAD.0b013e3283344895
  • [76] Mulu A., Maier M., Liebert U.G. 2013. Deworming of intestinal helminths reduces HIV-1 subtype C viremia in chronically co-infected individuals. International Journal of Infectious Diseases 17: e897-901. https://doi.org/10.1016/j.ijid.2013.03.022
  • [77] Mulu A., Anagaw B., Gelaw A., Ota F., Kassu A., Yifru S. 2015. Effect of deworming on Th2 immune response during HIV-helminths co-infection. Journal of Translational Medicine 13: 236. https://doi.org/10.1186/s12967-015-0600-3
  • [78] Goldstein N.S. 2002. Chronic inactive gastritis and coccoid Helicobacter pylori in patients treated for gastroesophageal reflux disease or with H. pylori eradication therapy. American Journal of Clinical Pathology 118: 719-726. https://doi.org/10.1309/LJ4D-E2LX-7UMR-YMTH
  • [79] Zhu D., Sha L., Shen X., Huan J., Wang H. 2014. Clinicopathological significance of gastric mucosal infection with coccoid Helicobacter pylori. Zhonghua Bing Li Xue Za Zhi 43: 326-329.
  • [80] World Health Organization. 2018. Global Health Observatory Data Repository. Available from: http://apps.who.int/gho/data/view.main.22500WH OREG?lang=en. Accessed January 19, 2019.
  • [81] Epstein M.A., Achong B.G., Barr Y.M. 1964. Virus particles in cultured lymphoblasts from Burkitt’s Lymphoma. Lancet 1: 702-703.
  • [82] Rajčáni J., Szenthe K., Durmanová V., Tóth A., Asványi B., Pitlik E., Stipkovits L., Szathmary S. 2014. Epstein-Barr virus (HHV-4) inoculation to rabbits by intranasal and oral routes results in subacute and/or persistent infection dissimilar to human disease. Intervirology 57: 254-269. https://doi.org/10.1159/000360223
  • [83] Balfour H.H., Odumade O.A., Schmeling D.O., Mullan B.D., Ed J.A., Knight J.A., Vezina H.E., Thomas W., Hogquist K.A. 2013. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein–Barr virus infection in university students. The Journal of Infectious Diseases 207: 80-88. doi:10.1093/infdis/jis646
  • [84] Abbott R.J., Pachnio A., Pedroza-Pacheco I., Leese A.M., Begum J., Long H.M., Croom-Carter D., Stacey A., Moss P.A.H., Hislop A.D., Borrow P., Rickinson A.B., Bell A.I. 2017. Asymptomatic primary infection with Epstein-Barr virus: Observations on young adult cases. Journal of Virology 91: e00382-17. https://doi.org/10.1128/JVI.00382-17
  • [85] Incrocci R., Barse L., Stone A., Vagvala S., Montesano M., Subramaniam V., Swanson-Mungerson M. 2017. Epstein-Barr virus latent membrane protein 2A (LMP2A) enhances IL-10 production through the activation of Bruton’s tyrosine kinase and STAT3. Virology 500: 96-102. https://doi.org/10.1016/j.virol.2016.10.015
  • [86] Piroozmand A., Haddad Kashani H., Zamani B. 2017. Correlation between Epstein-Barr virus infection and disease activity of systemic lupus erythematosus: A cross-sectional study. Asian Pacific Journal of Cancer Prevention 18: 523-527. doi:10.22034/APJCP.2017.18.2.523
  • [87] Croia C., Serafini B., Bombardieri M., Kelly S., Humby F., Severa M., Rizzo F., Coccia E.M., Migliorini P., Aloisi F., Pitzalis C. 2013. Epstein–Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Annals of the Rheumatic Diseases 72: 1559- 1568. https://doi.org/10.1136/annrheumdis-2012-202352
  • [88] Fox R.I., Pearson G., Vaughan J.H. 1986. Detection of Epstein-Barr virus-associated antigens and DNA in salivary gland biopsies from patients with Sjogren’s syndrome. The Journal of Immunology 137: 3162-3168.
  • [89] Henle G., Henle W. 1976. Epstein-Barr virusspecific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. The International Journal of Cancer 17: 1-7.
  • [90] Takada K. 2000. Epstein-Barr virus and gastric carcinoma. Molecular Pathology 53: 255-261.
  • [91] Dirmeier U., Neuhierl B., Kilger E., Reisbach G., Sandberg M.L., Hammerschmidt W. 2003. Latent membrane protein 1 is critical for efficient growth transformation of human B cells by Epstein-Barr virus. Cancer Research 63: 2982-2989.
  • [92] Shibata D., Weiss L.M. 1992. Epstein-Barr virusassociated gastric adenocarcinoma. The American Journal of Pathology 140: 769-774.
  • [93] Niedobitek G., Herbst H., Young L.S., Rowe M., Dienemann D., Germer C., Stein H. 1992. Epstein-Barr virus and carcinomas. Expression of the viral genome in an undifferentiated gastric carcinoma. Diagnostic Molecular Pathology 1: 103-108.
  • [94] Shukla S.K., Prasad K.N., Tripathi A., Singh A., Saxena A., Ghoshal U.C., Krishnani N., Husain N. 2011. Epstein-Barr virus DNA load and its association with Helicobacter pylori infection in gastroduodenal diseases. Brazilian Journal of Infectious Diseases 15: 583-590.
  • [95] Minoura-Etoh J., Gotoh K., Sato R., Ogata M., Kaku N., Fujioka T., Nishizono A. 2006. Helicobacter pylori-associated oxidant monochloramine induces reactivation of Epstein-Barr virus (EBV) in gastric epithelial cells latently infected with EBV. Journal of Medical Microbiology 55: 905-911. https://doi.org/10.1099/jmm.0.46580-0
  • [96] Cárdenas-Mondragón M.G., Torres J., Sánchez-Zauco N., Gómez-Delgado A., Camorlinga-Ponce M., Maldonado-Bernal C, Fuentes-Pananá E.M. 2017. Elevated levels of interferon-γ are associated with high levels of Epstein-Barr virus reactivation in patients with the intestinal type of gastric cancer. Journal of Immunology Research 2017: 1-10. https://doi.org/10.1155/2017/7069242
  • [97] Cárdenas-Mondragón M.G., Carreón-Talavera R., Camorlinga-Ponce M., Gomez-Delgado A., Torres J., Fuentes-Pananá E.M. 2013. Epstein Barr virus and Helicobacter pylori co-infection are positively associated with severe gastritis in pediatric patients. PLoS One 8: e62850. https://doi.org/10.1371/journal.pone.0062850
  • [98] Cárdenas-Mondragón M.G., Torres J., Flores-Luna L., Camorlinga-Ponce M., Carreón-Talavera R., Gomez-Delgado A., Kasamatsu E., Fuentes-Pananá E.M. 2015. Case–control study of Epstein–Barr virus and Helicobacter pylori serology in Latin American patients with gastric disease. British Journal of Cancer 112: 1866-1873. doi:10.1038/bjc.2015.175
  • [99] Szkaradkiewicz A., Karpiński T.M., Majewski J., Malinowska K., Goślińska-Kuźniarek O., Linke K. 2015. The participation of p53 and bcl-2 proteins in gastric carcinomas associated with Helicobacter pylori and/or Epstein-Barr virus (EBV). Polish Journal of Microbiology 64: 211-216.
  • [100] Saju P., Murata-Kamiya N., Hayashi T., Senda Y., Nagase L., Noda S., Matsusaka K., Funata S., Kunita A., Urabe M., Seto Y., Fukayama M., Kaneda A., Hatakeyama M. 2016. Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein–Barr virus. Nature Microbiology 1: 16026. doi:10.1038/nmicrobiol.2016.26
  • [101] Pandey S., Jha H.C., Shukla S.K., Shirley M.K., Robertson E.S. 2018. Epigenetic regulation of tumor suppressors by Helicobacter pylori enhances EBVinduced proliferation of gastric epithelial cells. MBio 9: e00649-18. https://doi.org/10.1128/mBio.00649-18
  • [102] Nagase L., Hayashi T., Senda T., Hatakeyama M. 2015. Dramatic increase in SHP2 binding activity of Helicobacter pylori Western CagA by EPIYA-C duplication: Its implications in gastric carcinogenesis. Scientific Reports 5: 15749. doi:10.1038/srep15749

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-63403d43-5af1-48c3-a1d5-7cb6fde2bc2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.