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Summary Acid volatile sulphide (AVS), one of the most reactive phases in sediments, is a
crucial link in explaining a dynamic biogeochemical cycle in a marine ecosystem. Research gaps
exist in describing the spatial variation of AVS and interconnections with sediment covariates in
the Eastern Upper Gulf of Thailand. Measurements of AVS and auxiliary parameters followed the
standard protocol. A comparison of ordinary kriging (OK), cokriging (CK), and regression kriging
(RK) performance was evaluated based on the mean absolute error (MAE) and root mean square
error (RMSE). The concentrations of AVS ranged from 0.003 to 0.349 mg g�1 sediment dry weight.
Most parameters contained short range spatial dependency except for oxidation—reduction
potential (ORP) and pH. The AVS tended to be both linearly and non-linearly related to ORP
and readily oxidisable organic matter (ROM). The RK model, using inputs from the tree-based
model, was the most robust of the three kriging methods. It is suggested that nonlinear
interactions should be taken into account when predicting AVS concentration, and it is expected
that this will further increase the model accuracy. This study helps establish a platform for
ecological health and sediment quality guidelines.
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1. Introduction

The Upper Gulf of Thailand (UGoT) receives water from four
major rivers, namely the Mae Klong and Tha Chin rivers in the
western part, and the Chao Phraya and Bang Pakong in the
eastern zone. These rivers bring sediment, which is predo-
minantly of detrital derivation, that originates from the
rivers (Emery and Niino, 1963; Milliman and Farnsworth,
2011).

The upper part of the Gulf of Thailand provides con-
siderable marine resources and other ecosystem services;
however, human activities have altered the environment
in this region, in particular shoreline and sediment pro-
cesses. For a long time, the UGoT has increasingly been
threatened by both natural and anthropogenic forces
impacting coastal areas and marine waters. Major impacts
include pollution from industrial waste and domestic run-
off, heavy metals, chemical residues from agriculture,
and oil spills (Wattayakorn, 2006).

A major portion of organic matter in oxygen deprived
aquatic sediments undergoes oxidation processes where
microbes utilise sulphate as the electron receptor, producing
hydrogen sulphides and other reduced-sulphur compounds
(Morse et al., 1987). The study of sulphur compound in
sediments is based on acid extraction (Allen et al., 1993;
Morse and Cornwell, 1987). Acid volatile sulphides (AVS) have
been shown to be an important metal-binding phase in
sediments. It has been reported in various works (Allen
et al., 1993; Simpson et al., 2012) that the sediments which
contain excess AVS over simultaneously extracted metal
(SEM) concentrations show a great reduction of toxicity.
Exposure to high levels (>1 mg L�1) of dissolved oxygen
during resuspension may oxidise the AVS and release metals
to more bioavailable forms (Caetano et al., 2003).

The AVS is produced within moderately- to strongly-
reducing conditions where redox potential is generally less
than �100 mV (van Griethuysen et al., 2003). Variability of
AVS in vertical patterns and on a point basis has been
addressed in various studies. However, little is known about
the spatial variation of AVS in sediments across a large area
and its relationships to other sediment parameters. In
addition, there are several geostatistical mapping techni-
ques which have been used, but gaps still exist in estimat-
ing spatial sediment variables. This study aims to address
the following questions: (1) how the spatial variability of
AVS and sediment covariates are explicitly expressed
across the marine ecology of interest, (2) to what extent
are the sediment covariates associated with AVS, and (3)
can sediment covariates help improve the predictive accu-
racy of the models when compared to the point-based
interpolation technique.

To answer these questions, our objectives include describ-
ing the spatial auto-correlation pattern and variation of AVS
and selected sediment covariates, determining the relation-
ships between AVS and sediment covariates, and comparing
the predictive performance of AVS derived from ordinary
kriging (OK), cokriging (CK), and regression kriging (RK).
Current knowledge suggests that no one technique is clearly
preferable. The performance of spatial prediction is related
to data-driven and multiple variable factors that need to be
investigated more in this area. Information on the spatial
distribution of AVS and various sediment parameters could be
a crucial link to understanding the magnitude of sulphide and
sediment transport. This would become a platform for
further study, including risk assessment and toxicological
studies, and the establishment of sediment quality guidelines
(Jiwarungrueangkul et al., 2015).

2. Study area

The Eastern Upper Gulf of Thailand (EUGoT) (Fig. 1), located
on the east side of the UGoT (latitude 138200N, longitude
1008450E), receives an enormous amount of freshwater from
the Chao Phraya and Bang Pakong estuaries, with annual
average river discharge of 482 m3 s�1 (Burnett et al., 2007)
and 267 m3 s�1 (Boonphakdee et al., 1999), respectively.
Strong stratification develops due to high discharge during
September and November. Water circulation patterns are
variable where a counter-clockwise circulation occurs in
the dry season during the northeast monsoon (November—
January) and is then clockwise in the wet season of the
southwest monsoon (May—August) (Buranapratheprat,
2008). Due to its comparatively static and poorly-flushing
condition, the upper gulf is prone to the accumulation of
nutrients and other contaminants (Wattayakorn, 2006). The
average depth is 14.5 m and the average wind speed is about
5 m s�1. Annual air temperature data collected from the Thai
Meteorological Department at two meteorological stations
within the study area between 2007 and 2016 showed a
minimum mean temperature of 24.78C, a mean temperature
of 28.648C, and a maximum mean temperature of 31.28C.
Activities in the area include fishing, aquaculture, recrea-
tion, tourism, ports, and shipping, as well as residential
areas.

3. Material and methods

3.1. Field data collection

The sampling design was performed on 8 � 8 km2 grids,
covering nearly 2000 km2. A total of 39 sediment samples
were collected in July 2016. Surface sediments were taken by
the Smith McIntyre grab sampler on board r/v Kasetsart-1.
The water depth was measured by the on-board depth sound-
ing system. Each sediment sample was subsampled, placed in
a zip-locked plastic bag, and stored in a cooler box containing
dry ice until it was received by the laboratory. A portion of
each sample was immediately checked for AVS on board the
vessel.

3.2. On-site parameter analyses

Some parameters were analysed on board. pH and tempera-
ture were measured using a pH meter (Hanna HI98127, Hanna
Instruments, USA), oxidation—reduction potential (ORP) was
determined using an ORP meter (Oakton ORPTestr 10, Eutech
instruments, USA), and salinity was measured with a YSI
multi-parameter water quality sonde (EXO2, YSI Inc./Xylem
Inc., USA). To prevent oxidation, the sediments were placed
in polyethylene zipped-bags that contained as little air as
possible. The AVS was determined on site using a gas detector



Figure 1 The Eastern Upper Gulf of Thailand. Black dots represent 39 sediment sampling observations. The bathymetry contours are
digitised from the nautical charts, Royal Thai Navy No. 001 (1:240,000, 2014) and No. 102 (1:240,000, 2007).
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tube. This low-cost and accurate method has recently been
used to measure hydrogen sulphide content in marine sedi-
ments (Kanaya, 2014; Moqsud and Shigenori, 2016; Wu et al.,
2003). The Gastec tube detection complies with international
industrial standards and other standards i.e., industrial stan-
dard JIS M 7605/JIS M 7650, the International Organisation for
Standardisation (ISO) 17621:2015, and the International
Union of Pure and Applied Chemistry (IUPAC) (Gastec Cor-
poration, 2017). In the field, the sampled sediments were
put in the generation tube and 5 ml of distilled water was
added. A gas detector tube (model 201H, Gastec Co.,
Japan) with a detection range of 0.02—0.2 mg (detection
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limit = 0.002 mg, relative standard deviation = 5%) was con-
nected to the gas generator tube and the other end was
connected to a vacuum pump. 18 N 2 ml of sulfuric acid
(H2SO4) was then added to the sediment in order to liberate
hydrogen sulphide (H2S) from the solid-phase sulphide in
the sediment. The gas formed by this process, accumulated
in the gas detector tube, allowing the AVS values to be read
directly on the scale in a mg unit. AVS analysis was per-
formed in triplicate via this method at each location.

3.3. Laboratory analyses

The oven-dry weight from a well-mixed sediment sample was
determined. The wet weight AVS concentration was con-
verted in response to the sediment dry weight basis. The
water content was simply calculated from the percentage
difference in the sample weight before and after oven drying
at 1058C. ROM was measured following the modified Walkley-
Black method using dextrose as the reference standard, as
described in Loring and Rantala (1992). The particle size was
analysed using a wet sieving and sedimentation technique
with a slight modification from Carver (1971). In this study,
fine-grain particles were considered for model inputs i.e.,
clay (0.002 mm) and clay + silt (<0.063 mm). All analyses
were done in triplicate for every sample.

3.4. Statistical and geostatistical analyses

In this study, exploratory statistics were used to check data
consistency, distribution of observed data, and outliers. The
Anderson—Darling test was used to test the normality of data.
The p-value should be greater than 0.05 to confirm that the
data were normally distributed. According to the test, the
AVS data were right-skewed, thus log-transformation was
carried out to normalise the distribution. The ORP value
was removed from the dataset, because it was considered
an extreme outlier–—the value was greater than three times
the interquartile range away from the 75th percentile. To
analyse the relationships among variables, a scatterplot
matrix and Pearson's correlation were performed. The spatial
behaviours of AVS and covariates were assessed using kriging
(Krige, 1951), based on a 150-m resolution. The UTM_Zo-
ne_47N projected coordinate system was applied throughout
the geospatial analysis. This study applied three kriging
techniques to explicitly and spatially predict AVS. The sta-
tistical and geostatistical software packages used in this
study included R 3.4.1 (R Core Team) and ArcGIS1 10.3.1
(Environmental Systems Research Institute (ESRI), Redlands,
CA).

3.4.1. Ordinary kriging
Ordinary kriging (OK) or point kriging is the most common
kriging practice in modelling spatial data. This method is
based on two assumptions. First, the local mean of the data is
unknown and is assumed constant within the domain of
stationarity. Second, the variance between two observations
is assumed to depend on the separation distance between the
two points (Goovaerts, 1997). The spatial dependence can be
expressed by semivariograms–—half the expected squared
difference between two points to the lag distance. The
function of estimation is given as:
gðhÞ ¼ 1
2NðhÞ

XNðhÞ

i¼1

fZðxiÞ�Zðxi þ hÞg2; (1)

where g(h) is the semivariogram at distance interval h. Z(xi)
represents measured variable values at sample locations of xi
and Z(xi + h) represents measured values of the neighbour at
distance xi + h. N(h) is the total number of observation pairs
separated by distance interval h. When the separation dis-
tance between two points increases, the spatial correlation
shown in the semivariogram decreases. The OK predictions
are based on the model:

ẐOKðx0Þ ¼
XN
i¼1

Wiðx0Þ�ZðxiÞ ¼ l0�Z; (2)

where ẐOKðx0Þ is the predicted value from the OK model. Wi is
the kriging weight and l0 is the vector of kriging weights. Z is
a vector of N observations. The characterisation of the
semivariogram involves three parameters: nugget, sill, and
range. The nugget C0 informs the measurement error among
observations at zero distance. The sill C0 + C is the upper
boundary of second order stationarity or the maximum vari-
ance between observations. The spatial autocorrelation
range r is the maximum distance of observations, thus spatial
dependency no longer increases beyond the range (Grun-
wald, 2006; Webster and Oliver, 2001).

3.4.2. Cokriging
Cokriging (CK) is the multivariate extension of kriging that
incorporates secondary data (Goovaerts, 1997). Sample cor-
relations over 0.5 are recommended to be included in the CK
model to improve the accuracy of the estimation (Taghiza-
deh-Mehrjardi et al., 2016). Besides the close relationships
between covariates, their spatial patterns of continuity are
also a key for model performance (Goovaerts, 1999). The CK
predictions are made by:

ẐCKðxiÞ ¼
XN
i¼1

liZ
sðxiÞ þ

XM
j¼1

hjSðxjÞ; (3)

where ẐCKðxiÞ is the estimation of Zs(xi) and S(xj) (j = 1, 2, 3,
. . ., M) are available data from auxiliary covariates. li and hj
are kriging weights obtained from the CK computation.

3.4.3. Regression kriging
An application of regression kriging (RK) involves a fitted trend
model along with residuals and then adds them back together to
produce a final interpolation surface of estimates. The AVS at a
new location (x) is estimated by RK as follows:

ẐRKðxÞ ¼ mðxÞ þ rðxÞ; (4)

where the trend m(x) is commonly fitted by linear regression,
such as ordinary least squares (OLS), multiple linear regres-
sion (MLR), and generalised linear models (GLMs). The resi-
duals, r(x), are computed based on OK. In most cases, the
connections between variables in an aqua system are much
more complex and sometimes they are non-linearly related.
This study extended a linear regression model to a tree-based
technique which allowed for the possibility of nonlinear
interactions between variables. The tree model successively
splits a dataset into a series of decision rules, then creates
uniform groupings (Prasad et al., 2006). The output from the
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decision tree was used as a conditional statement in the
raster calculation tool in the ArcGIS software. The prediction
residuals of the regression tree (RT) were interpolated using
OK and added to the predictions of RT.

3.5. Model evaluation

A 'cross-validation' or 'leave-one-out' process was used to
validate the semivariogram model (Goovaerts, 1997). The
evaluation of model performances was based on accuracy on
a point-by-point basis. The mean absolute error (MAE) and
the root mean square error (RMSE) of OK, BK, and RK were
compared. The MAE is a measure of the sum of the absolute
residuals, which indicates model performance bias. The
MAE value should be approximately 0 to identify unbiased
predictions. The RMSE reveals the magnitude of error that
might happen at any point in terms of a measure of the sum
of the squared residuals.  The smaller the RMSE, the more
accurate the predictions present. The equations are as
follows (Webster and Oliver, 2001):

MAE ¼ 1
N

XN
i¼1

jZðxobsÞ�ẐðxpredÞj; (5)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ZðxobsÞ�ẐðxpredÞ
h i2

vuut ; (6)

where Z(xobs) represents the values obtained from the em-
pirical field and ẐðxpredÞ is the estimated values from the
kriging models. N is the number of observed values with i = 1,
2, 3, . . ., N.
Table 1 Description of AVS and sediment parameters.

Parameters Unit Min Max 

AVS mg g�1 0.003 0.35 

ORP mV �379 �126 

Temperature 8C 28.8 31.2 

pH �log[H+] 7.10 7.90 

Salinity psu 29.0 33.2 

ROM % 0.46 4.84 

Clay % 4.2 27.1 

Clay + silt % 8.0 99.6 

Table 2 Semivariogram metrics of log-transformed acid volatile 

kriging (OK) model.

Variables Samples [n] Model Nugget Sill 

AVS 39 Spherical 0.17 1.15
ORP 38 Exponential 3097 5333.33
pH 39 Stable 0.02 0.06
Salinity 39 Stable 0.46 1.91
ROM 39 Stable 0.09 3.59
Clay 39 Gaussian 0.01 0.10
Clay + silt 39 Gaussian 42 2684.82
4. Results and discussion

4.1. Descriptive statistics

The AVS and sediment variables data are shown in
Table 1. Results from the table indicate that the EUGoT is
considered a reducing environment favouring sulphate
reduction. According to Barton (1995), general conditions
that favour sulphate-reducing bacteria are 258C to 358C, ORP
of �150 to �400 mV, pH between 4—5 and 8, and low oxygen
(<1 mg L�1).

The AVS concentrations in this study (mean 0.06 mg g�1,
range 0.003—0.35 mg g�1) were found to be slightly higher
than the mean of 0.03 mg g�1 and range of 0.0001—
0.20 mg g�1 (Khaodon et al., 2011) in the same region; but
lower than those found in the mangrove sediments (mean
0.62 mg g�1, range 0.14—0.49 mg g�1) on the east coast of
the Gulf (Chaikaew et al., 2017). Our findings were close to
the AVS content in the southern region (0.008—0.379 mg g�1

in summer; 0.001—0.282 mg g�1 in the rainy season)
(Wongsin et al., 2015). During the wet season, rivers play
a major role in contributing freshwater through the estu-
aries, thus salinity in the upper gulf shows a mixed state of
brackish water and mild salt water, as explained in Johnson
and Allen (2012), where a salinity of 0.5—30 psu is classified
as a brackish condition and >30 psu is classified as sea-
water. The average water depth of the study area is 14.5 m,
with the shallowest depth being 3.5 m and the deepest
27.7 m. Sediments contain a high percentage of clay + silt
content with a mean of 61.81% and median of 61.42%, while
the average clay content was 12.72%. ROM ranged from
0.46% to 4.84%.
Mean SD Median Skewness

0.06 0.10 0.04 2.22
�210 68 �204 �0.90

30.2 0.6 30.1 �0.03
7.48 — — �0.36

32.4 1.1 32.8 �1.76
2.33 1.35 2.22 0.25

12.7 5.0 11.7 0.81
61.8 33.4 61.4 �0.25

sulphide (AVS) and sediment parameters based on the ordinary

Nugget/sill No of lags Lag size [m] Range [m]

 0.15 10 2136 17,492
 0.58 10 3345 33,446
 0.33 12 5363 63,256
 0.24 10 5363 53,627
 0.03 10 5363 53,627
 0.10 10 1953 14,143
 0.02 10 5363 64,353



Figure 2 Spatial pattern of acid volatile sulphide (AVS) in the
Eastern Upper Gulf of Thailand sediment generated by:
(a) ordinary kriging (OK), (b) cokriging (CK), and (c) regression
kriging (RK).
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4.2. Geospatial analysis of AVS and sediment
parameters

The most appropriate models were chosen based on the
lowest nugget and RMSE. Thus, different types of fitted
models were implemented. A spherical model was used to
fit the empirical semivariogram model of log-transformed
AVS, while a stable model was used for pH, salinity, and
ROM. A Gaussian model was applied to perform clay and
clay + silt spatial distributions. The ORP semivariogram
was the variable that used the exponential model.
According to Cambardella et al. (1994), the degree of
spatial dependency in the scale of sampling can be
described by the nugget to sill ratio. When the ratio
<0.25, the spatial structure is indicated as strong,
0.25—0.75 is moderate spatial dependency, and when
>0.75 the spatial structure is weak. In this study, the
spatial autocorrelation for OM, clay, and clay + silt was
very strongly spatially dependent with a nugget/sill ratio
� 0.10. The spatial relationships were strong for AVS and
salinity with nugget/sill values of 0.15 and 0.24, respec-
tively. Medium-range spatial dependency was detected
for pH and ORP with nugget/sill ratios of 0.33 and 0.58,
respectively (Table 2).

The spatial patterns derived from OK were illustrated
in Fig. 2a for AVS and Fig. 3 for sediment parameters.
High concentrations of AVS appeared in the eastern
region of the study area and gradually declined towards
the middle of the Gulf. High AVS suggested an anoxic
condition relating to high ROM from river discharge,
anoxic water mass, and biomass residuals transported
into the UGoT by high flow in the wet season (Morimoto,
2015). As noticed from the field observations, in the
locations where a high AVS was identified, a rotten egg
smell was recorded along with extensive algal blooms.
This variation was likely to be influenced by the clockwise
water circulation in which poor water circulation
increased the vulnerability to AVS accumulation in the
downwind direction. In addition, the eastern coast has a
land-based source of nutrient inputs from domestic waste
(Chaikaew et al., 2017) and various activities such as
local food markets and aquaculture. The ORP, interest-
ingly, showed a hot spot in the centre of the study area
which slowly decreased towards the shore. From visual
observation, the AVS and ORP appear to have an inverse
spatial relationship. The water depth was shallow near
the river mouth and deeper when entering the open
ocean. Salinity was low near the estuaries because of
fresh water discharge during the wet season and was high
in the lower part of the study area. Spatial pH values
between 7.2 and 7.8 were found in the northwest and
east of the study area, and then increased towards the
deep sea. A high percentage of clay and clay + silt was
found near the shoreline and shallow water. These find-
ings coincided with those of Qiao et al. (2015) and affirm
that the fine-grained sediment is mostly deposited near
the north coast. However, the sediment types in the
UGoT have changed during the last two decades from
clay, sandy clay, and sand sediment from north to south in
the UGoT (Srisuksawad et al., 1997) to silt, sandy silt, and
silty sand (Qiao et al., 2015).



Figure 3 Spatial distribution of (a) oxidation—reduction potential (ORP), (b) pH, (c) readily oxidisable organic matter (ROM),
(d) salinity, (e) clay fraction, and (f) clay and silt fraction in the Eastern Upper Gulf of Thailand sediment obtained by ordinary
kriging (OK).
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4.3. Relationships between AVS and bio-physical
parameters

Of all the selected sediment parameters, two variables (ORP
and ROM) contributed to the correlation strength with a
Pearson's coefficient (r) greater than 0.5. A strong negative
correlation was observed between AVS and ORP (r = �0.73,
p < 0.0001). The AVS concentration was positively signifi-
cantly correlated with ROM (r = 0.53, p = 0.0008), while
the relationship between AVS and clay + silt fraction was
found to be slightly weaker (r = 0.49, p = 0.002) than ORP
and ROM. Fine sediment particles (clay + silt) and ROM were
significantly correlated (r = 0.89, p < 0.0001), implying that
small fractions are major controlling factors for ROM content.
In the marine sediment, this positive correlation can be
explained due to the stabilisation of ROM by adsorption
(Mayer, 1994; Xing et al., 2011) or by the hydrodynamic
equivalence between organic fractions and the high density
of fine-grained particles (Mayer et al., 1993). In the EUGoT
region, clay + silt content indirectly influenced AVS, as high
surface areas of fine-grained particles were able to adsorb
high levels of dissolved organic matter, which subsequently
undergoes decomposition via sulphate reduction to produce
sulphides. The correlation coefficient for each of ORP and
ROM with AVS was greater than 0.5 and was selected as
secondary covariates in CK analysis. The spatial pattern of
AVS derived by CK (Fig. 2b) was marginally different from the
OK model (Fig. 2a) yet reflected a similar pattern with a
narrow range of predictions. The non-linear characteristics
of each pair were further determined using a locally-
weighted scatterplot smoothing (LOWESS) function, a non-
parametric technique, for the best fit (Fig. 4).

A supervised machine learning, tree-based model was
then applied to find the best decision based on values that
minimise a loss function (McBratney et al., 2003). Results
showed that only ORP and ROM were used in the tree con-
struction. Three terminal nodes represented a classification
of estimated AVS concentrations. The summary of the model
showed a deviance of 0.002 (RMSE = 0.04), which indicated
that the tree had a minimal error of model prediction. The
simplicity of nodes identified a great deal of variation in
estimating AVS means (Fig. 5). From the outputs of the
terminal nodes, it can be interpreted that, for example, when
the ORP was lower than �284 mV, a mean AVS concentration
was 0.184 mg g�1. When ORP was greater than �284 mV and
ROM was lower than 2.98%, sediments contained 0.02 mg g�1

of AVS. The spatial pattern of AVS generated by RK is illustrated
in Fig. 2c, which shows the high to low AVS concentrations from
the east to the west obtained by RK.

4.4. Comparisons of kriging methods

When comparing the three interpolation methods visually,
the spatial patterns generally show differences in the



Figure 4 Scatterplots showing the relation of measured values
of (a) acid volatile sulphide (AVS) and oxidation—reduction
potential (ORP), (b) AVS and readily oxidisable organic matter

Figure 5 A regression tree model for predicting mean acid
volatile sulphide (AVS) based on selected parameters.
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smoothness of AVS (Fig. 2). Even though the mean value of
AVS from OK, CK, and RK remained nearly constant
(�0.05 mg g�1), the range was small for CK and RK. A good
contribution of auxiliary information from correlations
> 0.5 was expected to provide prediction strength in CK.
Interestingly, CK produced a weaker estimation than OK in
this study when the two covariates (ORP and ROM) were
included but performed a better estimation than OK when
only ORP (r = �0.73) was included as a covariate. Even
though the moderate to high correlation coefficients show
that ORP, ROM, and clay + silt provide more information
about AVS, a better prediction is not necessarily generated
unless the patterns of spatial continuity were similar
(Goovaerts, 1997). Šiljeg et al. (2015) indicated that CK
was the best geostatistical method among the 14 determi-
nistic and geostatistical methods (excluding RK) in pre-
dicting digital elevation models (DEM) in a bathymetric
survey. Their explanation was that precisely-obtained data
and more detailed analysis enabled the production of a
better continuous surface at micro levels.

In this study, RK, a technique combining a regression tree
and OK, is shown to be the most accurate model, rather than
CK or OK, based on very small MAE and RMSE results. The RK
model was fitted locally based on tree conditions to optimise
the data fitting. The findings in this study are consistent with
others (Li et al., 2011; Martínez-Cob, 1996; Moral, 2010)
which indicated that RK was by far the most accurate method
in predicting environmental data. Results of the error metrics
from different approaches are shown in Table 3.

5. Conclusions

This study has shown measurements and spatial variability in
AVS and selected sediment parameters and their relation-
ships. The average AVS contents of surface sediment ranged
from 0.003 to 0.349 mg g�1 dry weight sediment with an
average value of 0.057 mg g�1. A high amount of AVS was
(ROM), and (c) AVS and clay + silt using linear regression (bold
line) and non-linear regression (dotted line).



Table 3 A comparison of error metrics of predicted AVS in mg g�1 dry weight unit, calculated on point-by-point data (n = 39).

Geostatistical methods Min Max Mean SD MAE RMSE

OK 0.004 0.249 0.052 0.055 0.005 0.033
CK * 0.010 0.154 0.057 0.040 0.001 0.004
CK ** 0.007 0.288 0.050 0.050 �0.016 0.100
RK 0.009 0.142 0.059 0.042 �0.0003 0.002

OK = ordinary kriging; CK = cokriging; RK = regression kriging; SD = standard deviation; MAE = mean absolute error; RMSE = root mean
squared error; CK* = ORP included as covariate; CK** = two parameters (ORP and ROM) included as covariates.
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found along the east coast. The spatial dependence of ORP
and pH was contained in a medium-range pattern. The rest of
the sediment parameters appeared to be within a short
range. The concentrations of AVS in the sediments of EUGoT
were closely related to the ORP and ROM in a linear inter-
action. The ORP and ROM, therefore, were spatial sediment
covariates of AVS in the nonparametric model. When using
the CK method, the correlation between parameters of
values greater than 0.7 outperformed OK. Overall, RK was
the most robust method, over CK and OK, for predicting AVS.
It is recommended that nonparametric or nonlinear models
be considered as an alternative method in estimating spatial
AVS variability to reduce modelling bias.
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