PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 12 |

Tytuł artykułu

Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (Medicago sativa L.) cultivars at high salinity

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Alfalfa (Medicago sativa L.) plant growth decreases when cultivated under salinity or irrigated with salty water. Inoculation with plant growth-promoting bacteria (PGPB) is a method for mitigating the harmful effects of salinity on plants growth. To investigate salt-tolerant PGPB with salt-tolerant and salt-sensitive alfalfa cultivar interactions under salinity, some physiological and agronomical aspects were investigated. The inoculated plants of alfalfa cultivars with Hartmannibacter. diazotrophicus and Pseudomonas sp. bacteria were compared with non-inoculated plants. Plants were grown in growth room and irrigated with tap water until 6–7 weeks, and then, salinity stress imposed by irrigating with tap water (control), 10 dS m⁻¹ and 20 dS m⁻¹ NaCl. Salinity reduced relative water content (RWC), membrane stability index (MSI), K⁺, photosynthesis rate (Pn) and stomatal conductance (gs), leaf number, height, and dry weight, and increased sodium in all cultivars. Inoculation of cultivars with both PGPB mitigated the negative effects of salinity on plants growth by increasing the root length and weight, nodule number, chlorophyll pigments, RWC, MSI, Pn, and gs. Chlorophyll pigments, plant height and leaf number, Na⁺, K⁺/Na⁺, and nodule number improved more pronounced through inoculating with Pseudomonas sp., whereas K⁺, carotenoids, and RWC improved more pronounced through H. diazotrophicus under salinity. The results showed inoculation with two bacteria improved growth performance in salt-tolerant and salt-sensitive cultivars under 10 dS m⁻¹, but at high salinity (20 dS m⁻¹), inoculation was successful only in salt-tolerant alfalfa cultivars.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

12

Opis fizyczny

Article 195 [13p.], fig.,ref.

Twórcy

autor
  • Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, P.O.Box 313‑45195, Zanjan, Iran
  • Department of Soil Science and Water Management, Szent Istvan University, Budapest, Hungary
autor
  • Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, P.O.Box 313‑45195, Zanjan, Iran
  • Department of Soil Science, Faculty of Agriculture, University of Tehran, Tehran, Iran
autor
  • Department of Soil Science, Faculty of Agriculture, University of Tehran, Tehran, Iran
autor
  • Department of Soil Science, Faculty of Agriculture, University of Tehran, Tehran, Iran
  • Institute of Physiology, Biochemistry and Animal Health, Kaposvar University, Kaposvar, Hungary
autor
  • Department of Soil Science, Faculty of Agriculture, University of Tehran, Tehran, Iran

Bibliografia

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy. 7(1):1–18
  • Ali ZN, Ullah S, Naseem M, Inam-U H, Jacobsen HJ (2015) Soil bacteria conferred a positive relationship and improved salt stress tolerance in transgenic pea (Pisum sativum L.) harboring Na⁺/H⁺ antiporter. Turkish J Bot 39:962–972
  • Anower RM, Mott IW, Peel MD, Wu Y (2013) Characterization of physiological responses of two alfalfa half-sib families with improved salt tolerance. Plant Physiol Biochem 71:103–111
  • Ansari M, Shekari F, Mohammadi MH, Biró B, Végvári G (2017) Improving germination indices of alfalfa cultivars under saline stress by inoculation with beneficial bacteria. Seed Sci Technol 45(2):475–484
  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta Vulgaris. Plant Physiol 24:1–15
  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR for protection of plant health under saline conditions. Bacteria in agrobiology: stress management. Springer, Berlin, pp 239–258
  • Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132(1):10–20
  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica. 51(2):163–190
  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotech Lett 32(11):1559–1570
  • Bacilio M, Rodriguez H, Moreno M, Hernandez JP, Bashan Y (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol Fertil Soils 40:188–193
  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413
  • Baset M, Shamsuddin ZH, Wahab Z, Marziah M (2010) Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured ‘Musa’ plantlets under nitrogen-free hydroponics condition. Aust J Crop Sci 4(2):85
  • Bashan Y, Bustillos JJ, Leyva LA, Hernandez JP, Bacilio M (2006) Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biol Fertil Soils 42(4):279–285
  • Bertrand A, Dhont C, Bipfubusa M, Chalifour F, Drouin P, Beauchamp CJ (2015) Improving salt stress responses of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain. Appl Soil Ecol 87:108–117
  • Cedeno-Garcia GA, Gerding M, Moraga G, Inostroza L, Fischer S, Sepúlveda-Caamaño M, Oyarzúa P (2018) Plant growth promoting rhizobacteria with ACC deaminase activity isolated from Mediterranean dryland areas in Chile: effects on early nodulation in alfalfa. Chilean J Agric Res 78(3):360–369
  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560
  • Del Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39(1):82–90
  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63(9):3415–3428
  • Egamberdieva D, Wirth S, Jabborova D, Räsänen LA, Liao H (2017) Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. J Plant Interact 12(1):100–107
  • Etesami H, Beattie G (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9(148):1–20
  • Gao Y, Lu Y, Wu M, Liang E, Li Y, Zhang D, Yin Z, Ren X, Dai Y, Deng D, Chen J (2016) Ability to remove Na⁺ and retain K⁺ correlates with salt tolerance in two maize inbred lines seedlings. Front Plant Sci 7:1–15
  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339
  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech. 5(4):355–377
  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol. 7(2):096–102
  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:1–10
  • Han HS, Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci. 1(3):210–215
  • Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agric Sci 11(1):57–61
  • Hosseinzadah F, Satei A, Ramezanpour MR (2011) Effects of mycorrhiza and plant growth promoting rhizobacteria on growth, nutrients uptake and physiological characteristics in Calendula officinalis L. Middle-East J Sci Res 8:947–953
  • Jaleel CA, Sankar B, Sridharan R, Panneerselvam R (2008) Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turkish J Biol 32(2):79–83
  • Li R, Shi F, Fukuda K, Yang Y (2010) Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.). Soil Sci Plant Nutr. 56(5):725–733
  • Liu J, Tang L, Gao H, Zhang M, Guo C (2019) Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. J Sci Food Agric 99(1):281–289
  • Maas EV, Hoffman GJ (1977) Crop salt tolerance-current assessment. J Irrig Drain Division 103(2):115–134
  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30(5):595–618
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol. 59:651–681
  • Nadeem SM, Zahir ZA, Naveed M, Ashraf M (2010) Microbial ACC-Deaminase: prospects and applications for inducing salt tolerance in plants. Crit Rev Plant Sci 29:360–393
  • Neres MA, Castagnara DD, Mesquita EE, Zambom MA, Souza LCD, Oliveira PSRD, Jobim CC (2010) Production of alfalfa hay under different drying methods. Revista Brasileira de Zootecnia. 39(8):1676–1683
  • Noori F, Etesami H, Zarini HN, Khoshkholgh-Sima NA, Salekdeh GH, Alishahi F (2018) Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. Ecotoxicol Environ Saf 162:129–138
  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349
  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34(4):737–752
  • Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49(1):85–91
  • Santos CV (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hortic 103(1):93–99
  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249
  • Shivakrishna P, Reddy KA, Rao DM (2018) Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi J Biol Sci 25:285–289
  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131
  • Smart RE, Bingham GE (1974) Rapid estimates of relative water concentration. Plant Physiol 53:258–260
  • Steffens B (2014) The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front Plant Sci 5:1–5
  • Suarez C, Cardinale M, Ratering S, Steffens D, Jung S, Montoya AMZ, Geissler-Plauma R, Schnell S (2015) Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress. Appl Soil Ecol 95:23–30
  • Torabi M, Halim RA, Choukan R (2014) Physiological adaptation of alfalfa genotypes to salt stress (one of deleterious impacts of climate change). Science, policy and politics of modern agricultural system. Springer, Dordrecht, pp 181–194
  • Trdan S, Vučajnk F, Bohinc T, Vidrih M (2019) The effect of a mixture of two plant growth-promoting bacteria from Argentina on the yield of potato, and occurrence of primary potato diseases and pest–short communication. Acta Agric Scand Sect B Soil Plant Sci 69(1):89–94
  • Volkov V (2015) Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Front Plant Sci 6:1–25
  • Wang Y, Zhang Z, Zhang P, Cao Y, Hu T, Yang P (2016) Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.). Plant Soil 402(1–2):247–261
  • Werner D, Newton WE (eds) (2005) Nitrogen fixation in agriculture, forestry, ecology, and the environment, vol 4. Springer Science & Business Media, New York
  • Xiao X, Fan M, Wang E, Chen W, Wei G (2018) Interactions of plant growth-promoting rhizobacteria and soil factors in two leguminous plants. Appl Microbiol Biotechnol 101(23–24):8485–8497
  • Zahaf O, Blanchet S, De Zélicourt A, Alunni B, Plet J, Laffont C et al (2012) Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. Molecular plant. 5(5):1068–1081
  • Zahran HH (1991) Conditions for successful Rhizobium-legume symbiosis in saline environments. Biol Fertil Soils 12(1):73–80
  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-61a9c34d-8270-4f22-bc50-91c9b66716fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.