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Summary Ascidians are one of the dominant marine sedentary filter feeders recorded more
frequently as introduced species than other taxa. It is renowned that artificial structures offer novel
niches to the non-native species. A yearlong investigation was carried out to understand the role of
ascidian colonization on various artificial structures located along 84 stations stretched on the
1076 km long Tamil Nadu coast of South India. It revealed the occurrence of 26 ascidian species,
among these18 specimens were identified to species level, 8 were identified to genus level based on
morphological characters. As on origin and nativity, out of the total 26, 3 species were classified as
introduced, 8 specieswere classifiedas nativeand15as cryptogenic species. Interestingly,Polyclinum
isipingense andDiplosoma variostigmatumwere reported first time in Indianwaters. The cryptogenic
and colonial forms of ascidians are dominant in the artificial structures. There were significant
differences observed between artificial structure type, geographic locations (p = 0.0071) and
between ascidians forms as well as geographic areas (p = 0.00375). This study also confirms the
artificial structures offer new niches for non-native ascidian colonization. The influence of the
substrate (structure type) aswell as geographic locations on the biotic assemblagewas also observed.
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1. Introduction

The urban sprawl near the coasts is one of the most extreme
and widespread human impacts (Mckinney, 2006). It leads to
severe landscape changes, species extinctions, homogeniza-
tion of biota at local, regional and global scales (Mckinney
and Lockwood, 1999). The anthropogenic impact on coastal
areas occurs in the form of coastal structures for erosion
prevention, which offer novel niches to the introduced spe-
cies. However, their role in the subsequent invasions into
native habitat remains unknown (Dumont et al., 2011). The
enduring effect of artificial structures on the diversity of
coastal biota at the regional level has started to increase
along with the controversies of the lower diversity of native
species and higher diversity of non-native species on these
structures (Airoldi et al., 2015).

The colonization of artificial structures by native species
was influenced by many factors — such as structural types,
environmental factors etc. In some areas, colonization of the
artificial structures by non-indigenous organisms exceeds the
native forms (Dafforn et al., 2009; Firth et al., 2015; Glasby
et al., 2007). Even though maritime activity distributes non-
native species all around the globe, the triggering factor
inducing the invasive nature ascertained between the prime
entry point and the adaptability to the favorable new envir-
onment remains unclear (Hewitt et al., 2009). After a suc-
cessful invasion, the local fishing and recreational boating
activities potentially facilitate further expansion (Davidson
et al., 2010). Thus, the harbors and marinas play a crucial
role from the initial inoculation to the successful establish-
ment by spreading to adjacent places (Forrest et al., 2009).
Interestingly, there are limited reports available on further
expansion of non-native organisms to the natural habitats.

It is well documented that introduced species were more
frequently found on the artificial hard substrate in estuaries
and bays than on the open coasts (Wasson et al., 2005). The
occurrences of numerous cracks and gaps on these structures
act as a shelter and protection from predation, desiccation,
wave action and other stresses for the animals. Hence, non-
indigenous species are more abundant on the artificial struc-
tures than in the natural rocky systems. Since the world is
connected by the growing transport networks and infrastruc-
ture, the spread of the non-indigenous species (NIS) became a
common problem (Minchin and Gollasch, 2003). Moreover,
these artificial hard networks are considered to be the
biggest threat to biodiversity after a habitat loss (Wilcove
et al., 1998). Significant investment in reducing invasion
opportunities in the form of managing the transport vectors
or border control were found to be ineffective and lead to an
upsurge in the eradicating cost (Hulme, 2009).

The ascidians are the common sessile filter feeders often
recorded as introduced species, mostly occupying the arti-
ficial coastal defense structures and (Aldred and Clare, 2014;
Lambert and Lambert, 2003). Their successful proliferation is
based on flexibility to survive in varying temperature, salinity
(Nagar and Shenkar, 2016) and pollution (Beiras et al., 2003).
Some of the invasions have deleterious economic (McKindsey
et al., 2007) and ecological (Lutz-Collins et al., 2009) impact
on the surrounding environment.

Short-lived, non-feeding, low-dispersal larval stageofas-
cidians are considered an indicator of invasion if found miles

from its known habitat and are spreading through ballast
water transport and hull fouling dispersion (Lambert, 2007).
These invasive ascidians are acting as strong spatial compe-
titors by frequently displacing native anemones, mussels,
algae and other fouling community, where the mechanism of
eradication is complicated (Lindeyer and Gittenberger,
2011). They foul various artificial structures like jetties, ship
hulls, floating docks, buoys, floats, cables and other human-
made structures (Lambert, 2005). Hence, the study of the
ascidians communities is necessary for monitoring the non-
indigenous species.

Numerous researches have been carried out worldwide to
ascertain the negative impacts of ascidians colonization on
the artificial structures but few studies concerned species
conservation (Ferrario et al., 2016; Firth et al., 2014). In
India, sporadic studies on location-specific non-indigenous
ascidians species on certain structures and harbor were
carried out (Ali et al., 2009; Jaffar et al., 2016). Hence,
an extensive survey along the entire stretch of the Tamil Nadu
coast was conducted to comprehend the distribution of the
ascidians species on various types of artificial coastal defense
structures.

2. Material and methods

The 1076 km coastal stretch of Tamil Nadu is located in the
southeastern part of the Indian Peninsula and it forms a part
of the Coromandel Coast on the Bay of Bengal and the Indian
Ocean. This coastal corridor comprises 15 marinas and har-
bors. The entire coastline is occupied by numerous artificial
structures and protective groins that provide habitat for a
wide variety of marine organisms. Based on utility, these
structures were classified into four types. (1) The artificial
structures in the fishing harbor, such as breakwaters, groins,
etc. are organized under [76_TD$DIFF]“Fishing”. (2) The structures with
function in the fish farming, salt pan, are categorized under
“Commercial”. (3) The structures with a role in the devel-
opment of tourism (surfing, boat riding, etc.) are organized
under “Recreational”. (4) The artificial structures like sea
wall and groins used for the shoreline armoring and urban
coastal protection are classified under the “Coastal armor-
ing” category

Series of field surveys were conducted through SCUBA
diving and Snorkelling at low tide, at depths ranging from
1 to 5 m (Jebakumar et al., 2015) at seven sampling zones
during January, May, and September 2016. Each zone
included 8 to 18 sampling stations (total of 84 stations) along
the Tamil Nadu coast (Fig. 1). Investigated habitats com-
prised artificial substrates such as boulder piles, groins,
caissons, tetrapods, fishery jetties, pipeline trestles, and
harbor breakwaters along the entire shoreline of Tamil Nadu.
The entire structure at each station was surveyed completely
to collect the ascidian samples. Hand tools were employed to
remove animals from solid surfaces of the artificial struc-
tures.

Representative ascidians were photographed in situ. In
the case of large colonial ascidians, a portion of the colony
was collected after inspecting the structure and dimension of
the whole colony. In the case of ascidians, after collecting
representative specimens identified in the field, others were
transported to the laboratory for detailed study. The
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collected samples were narcotized in menthol crystals up to
two hours for colonial ascidians and three hours for solitary
ascidians. After narcotization, the specimens were fixed
separately by quickly adding one part of 40% formaldehyde
to nine parts of fresh sea water, and preserved in 70%
ethanol. The samples were sorted and identified up to spe-
cies, or the lowest possible taxa by observing all the tax-
onomical characters using various microscopes, e.g.
Olympus, (Germany), compound (Labomode, Vision 2000)
and stereo microscopes (Micros, Austria). The taxonomical
keys and all the observed characters were compared with
previously published data (Kott, 1985; Millar, 1975; Monniot
and Monniot, 1996; Renganathan, 1986; Tokioka, 1967). Vou-
cher specimens were deposited to Zoological Survey of India,
Chennai.

To compare the ascidian diversity and structure types, the
results were visualized with the help of the non-metric
multidimensional scaling (nMDS) plot. The analyzes were
carried out using the software PRIMER v7.0 (Clarke et al.,
2014). The Bray-Curtis similarity matrices were transformed
to the distance for input into the PRIMER v7.0. to perform a
nMDS plot (no transformation to the original data was
applied, as it was semi- quantitative ). The analyses were
carried out by comprising all the species (native, introduced
and cryptogenic) obtained from each structure. The nMDS
performs 20 different random starts and compares them to
find a stable solution. Additionally, the non-parametric Krus-
kal—Wallis test was also performed using the software PAST 3
(Hammer et al., 2001), to find the significant correlation
between the structure types and the abundance of native,
introduced and cryptogenic ascidian species. The same data-
sets were also analyzed using the single factor ANOVA to test
for the difference between the structure types and ascidian
species abundance in detail.

3. Results

An extensive survey on the presence of ascidian species was
carried out in 84 stations comprising the artificial coastal
defense structures along the 1076 km coastal stretch of Tamil
Nadu (the south-eastern coast of India) three times a year
(January, May, and September). During the survey, 26 differ-
ent ascidian samples belonging to 8 families under three
orders were collected and identified (Table 1). Out of 26 sam-
ples, 18 were identified at the species level, and the remain-
ing eight specimens identified at genus level due to invisible
key morphological characters. Among the surveyed artificial
structures, the highest species richness was observed in the
Colachel fishing harbor (CFH) (n = 13) followed by Punnai-
kayal left arm (PKLA) (n = 11), Muttam fishing harbor (MFH)
(n = 11) and Thondi (TDMV) (n = 10). There are almost 57 arti-
ficial structures out of the 84 surveyed with zero ascidian
species recorded (Table S1). The artificial structures used in
fishing harbor recorded the highest species richness (n = 24)
followed by the Recreational (n = 8), Armor (n = 6) and
Commercial (n = 2) (Fig. 2).

After identification of the ascidian samples, each species
was classified into one of the following groups: native, crypto-
genic and invasive, depending on their origin (Carlton, 1996). If
the species' origin, distributional and genetic data exists, it can
be classified as Introduced. The species endemic to Indian sub-
continent was classified as Native. Finally, when supportive
data of nativity or geographic origin was not available, it was
classified as cryptogenic species (Jaffar et al., 2016). In the
artificial coastal defense structures cryptogenic species were
highly abundant (n = 15), followed by native (n = 8) and inva-
sive (n = 3) species (Fig. 3). The species abundance pattern
along the geographical locations is represented in
Fig. 4. Further, out of 26 ascidian species, 24 species were

[(Figure_1)TD$FIG]

Figure 1 Study Area: The Tamil Nadu coast in southern India; grey squares indicate the seven sampling zones where the 84 sampling
stations were placed (see supplementary material Table S1 for coordinates).
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reported earlier in Indian sub-continent and, the remaining two
species, namely Diplosoma variostigmata and Polyclinum isi-
pingense, were reported for the first time in Indian waters. The
two newly recorded species were confirmed and submitted to
Zoological Survey of India to obtain accession numbers (Acces-
sion No. NZC/MBRC/M.323 & NZC/MBRC/M.327).

The population densities of native and cryptogenic species
were themost dominant and prevailing in all types of artificial
structures. Low density of population represented the inva-
sive species and was limited to the specific areas. The number
of ascidians species present in the fishing harbor structures
was high, with an average of 3.35 species/structure, followed

Table 1 Distribution of Ascidian species along the study area.

SI.No Order Species Origin Accession number Structure type

1 Aplousobranchia Polyclinum indicum Native 1
2 Polyclinum isipingense* Cryptogenic NZC/MBRC/M.327 1
3 Didemnum psammatodes Cryptogenic NZC/MBRC/M.328 1, 3
4 Lissoclinum fragile Cryptogenic 1, 3
5 Didemnum vexiculum Cryptogenic 1, 3
6 Trididemnum miniatum Cryptogenic NZC/MBRC/M.319 1
7 Aplidium sp. Native 1, 2, 4
8 Eudistoma sluiteri Native NZC/MBRC/M.326 2, 3
9 Eudistoma tumidum Native NZC/MBRC/M.322 1
10 Diplosoma variostigmatum* Cryptogenic NZC/MBRC/M.323 3
11 Synoicum sp. Native 1
12 Aplidium multiplicatum Native NZC/MBRC/M.325 1
13 Phlebobranchia Corella eumyota Invasive 1
14 Phallusia nigra Invasive 1
15 Ascidia gemmata Cryptogenic NZC/MBRC/M.320 1
16 Ecteinascidia sp. Native 1
17 Ecteinascidia venue Native NZC/MBRC/M.329 1
18 Stolidobranchia Symplegma brakenhielmi Cryptogenic NZC/MBRC/M.321 1, 3
19 Styela canopus Invasive NZC/MBRC/M.324 1, 3
20 Symplegma sp. Cryptogenic 1
21 Symplegma sp.-2 Cryptogenic 3
22 Herdmania momus Savigny Cryptogenic 1
23 Botrylloides nigrum Cryptogenic 1
24 Botryllus sp.3 Cryptogenic 1
25 Botryllus sp.2 Cryptogenic 3
26 Botrylloides sp.1 Cryptogenic 1

[70_TD$DIFF]* indicates the organisms reported first time in Indian waters.
Fishing — 1, Commercial — 2, Recreational — 3 and [71_TD$DIFF]Armour — 4.
[(Figure_2)TD$FIG]

Figure 2 Number of Ascidian Species recorded at each structure type.
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by commercial (0.2 species/structure), armor (0.588 species/
structure) and recreational (0.5 species/structure). Among
widely distributed colonial and solitary forms of ascidians, the
colonial forms dominated the artificial structures during the
entire study period. Also, most of the cryptogenic species
belonged to the colonial forms,whereas the invasive belonged
to the solitary type. Further, there was no significant correla-
tion observed between the types and forms of ascidians. The
D. passamodes, L. fragile and D. vexiculum were the most
common colonial ascidians to occupy the several artificial
structures. Of the L. fragile recorded in the 15 structures,
D. passamodes recorded in the 14 structures and the D.
vexiculum was recorded on 12 structures. Surprisingly, the
solitary ascidians such as C. eumyte was observed on three
structures, P. nigra and H. savingy were observed on four
structures.

When the permutational analysis was done considering the
geographical location (zone wise), and structural types (Fish-
ing, Armor, Commercial and Recreational), results showed a
significant effect of both factors on the ascidian community
structures ( p = 0.0071). Likewise, the Kruskal—Wallis test
also showed a substantial difference in ascidian community,
with geographical locations and structure types
( p = 0.00064).

Similarly, significance ( p = 0.00375) was observed
between geographic location (zone wise) and the ascidian
types (Native, Cryptogenic, and Introduced) when permuta-
tional analysis of the community structures with the location
only was performed. In addition, Kruskal—Wallis test was
carried out, and this result proved a significant difference
between the geographical location and ascidian type
( p = 0.00495).

[(Figure_3)TD$FIG]

Figure 3 Total Number of Ascidian Species recorded as per type of species (Native, Cryptogenic and Introduced).

[(Figure_4)TD$FIG]

Figure 4 Total number of Ascidian species recorded at each sampling zone, Tamil Nadu.
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The non-metric MDS plot constructed from relative abun-
dance data (using Bray-Curtis index) showed improved dif-
ferentiation among the types of structures (Fig. 5). The
significant difference observed in ANOVA, and Kruskal—Wallis
test between the different structures and the geographical
locations (zone wise) is represented graphically with the
separation of structures. By considering the four types of
structures alone for statistical treatment, the Recreational,
Commercial and Armoring structures showed linearity,
whereas the Fishing structure was apart from the other three
in the graph.

4. Discussion

The present study was a pioneering attempt to compile an
up-to-date list of ascidian species along with the Non-Indi-
genous species (NIAs) found on the various artificial coastal
defense structures along the 1076 km coast of Tamil Nadu,
India. Among the 84 artificial coastal defense structures
surveyed, 26 different types of ascidian species were
recorded. Among them, 18 species were identified at the
species level and the remaining were identified at the genus
level. The two species, namely Polyclinum isipengense and
Diplosoma variostigma were reported for the first time in the
Indian waters. These newly recorded species were observed
only on the Fishing and Recreational types of structures. It
leads to the conclusion that the introduction of the species
happened through hull fouling and was followed by spreading
through the local vessel movement. The D. variostigma was
observed in Japan (Hirose and Oka, 2008), whereas the P.
isipengense was observed at South Africa (Sluiter, 1898).
However, the nativity of these species remains unclear.
Therefore, these two species observed in the present study
were categorized as cryptogenic species, though they are
non-native to Indian waters. In general, the cryptogenic
species dominated the native and introduced forms along
the artificial structures, with the maximum record of 15 spe-
cies. In the case of introduced species, the artificial

structures sheltered only three species, whereas eight native
ascidian forms have also been recorded. During the past
systematic fauna studies, the ascidian species attracted little
attention, hence the lacuna in nativity records for most of
these species (Ali et al., 2009). Thus the cryptogenic species
outnumbered the non-indigenous species (López-Legentil
et al., 2015). This applies the general understanding that
the artificial structures are not a suitable habitat for the
native ascidian species. Among the different types of struc-
tures, the lowest number of 2 ascidian species was recorded
on the Commercial structures, followed by six species on the
Armoring structures, eight species on the Recreational struc-
tures and the maximum of 24 species were recorded on the
Fishing harbor structures. The abundance of the ascidian
settlements on the Fishing harbor structure was due to the
occurrence of exclusively cryptogenic and introduced spe-
cies. The observed preference of the non-native ascidians for
the Fishing harbors structures, which are considered a hot-
spot for exotic species, was also reported by Murray et al.
(2012) and López-Legentil et al. (2015).

The permutational analysis and Kruskal—Wallis test
showed the significant difference when the comparison is
done between the abundance of ascidians types (native,
introduced and cryptogenic) with the geographic locations
(zone wise). The significant difference might be due to the
presence of fishing harbors at some zones — the harbors are
considered to be a hotspot for non-indigenous species. The
frequent ship movement along the Fishing harbor structures
facilitated the settlement of the non-native ascidian species
from the hulls of vessels. Furthermore, the Zones 5, 6 and
7 contained a higher number of non-native ascidian species
(Table S1) than the native species. It has been confirmed by
the permutational analysis and revealed that the structure
types had significant effects on the ascidian settlements. The
structure types and ascidian types showed the significant
difference, which was further confirmed by Kruskal—Wallis
test. The overall results evidently show that the fishing
harbor structures are supporting the non-native species more
than the native species. In general, the colonial ascidian

[(Figure_5)TD$FIG]

Figure 5 Non-metric MDS plot obtained from the Bray-Curtis similarity index for the whole dataset (structure types and ascidian
abundance in each type).
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forms outnumbered the solitary forms whereas most of the
cryptogenic ascidians observed are colonial forms. It has
been established that several colonial species were intro-
duced worldwide through hull fouling and aquaculture (Lam-
bert, 2002).

Further, reduction in the vessel movement around the
Commercial, Recreational and Armoring structures lead to a
deficiency of non-native species. The distance from the
fishing harbor and the sparse movement of the vessels along
the other three type of structures limited the secondary
spread. This result supports the hypothesis that non-indigen-
ous species (NIAs) thriving on artificial structures in the
proximity to vector but failing to spread on other structures
(Lambert, 2002).

The n-MDS plot constructed by using the Bray-Curtis Index
showed, that the structure types mostly drove the settle-
ment of ascidian types and forms. Among the various types of
structures studied, fishing harbor structures were distinct
and stood out compared to the other structures (Fig. 5). The
separation of the fishing structures from the remaining
structures was explained by the presence of some exclusive
species such as Botrylloides nigrum, Herdmania momus sav-
ing and Symplegma sp. or the most exclusive species like
Polyclinum isipingense, Synocium sp., Corella eumyota and
Phallusia nigra. The current scenario of augmented recrea-
tional sailing and the proliferation of marinas and artificial
marine structures in recent decades provided additional sites
for the colonization of non-indigenous species (NIAs), even
those with low dispersal abilities (Shenkar and Loya, 2009).
Many studies substantiated that the artificial coastal defense
structures serve as an asylum for the NIAs (Airoldi et al.,
2015; Shenkar and Loya, 2009). The observations in the
present study are comparable with the earlier researches.
However, the artificial coastal defense structures proved to
be a novel niches for the colonization of marine organisms
and developed unique ecosystems (Ferrario et al., 2016; Firth
et al., 2014). The study clearly depicted that the distribution
and diversity of the ascidian species largely depend on the
type of structure and a proximity between them. This
detailed study also put forth the idea, that the artificial
coastal defense structures can help in the development of
the coastal ecosystem. Therefore, the better understanding,
proper planning and appropriate utilization of the artificial
structures along the coast will reduce the settlement of the
non-native species and will also help enhance the presence of
native species.

5. Conclusion

Despite the variations in structures, the ascidians species
(Native, Cryptogenic, and Introduced) occupied almost all
types of structures. The artificial structures hold all three
varieties of ascidians forms of both solitary as well as colonial
types. The cryptogenic species was more dominant than the
native and introduced species. However, the diversity of the
native species was similar to the abundance of the crypto-
genic form. In the results, it was apparent that the structures
with substantial vessel traffic harbor non-native species and
vice versa in the case of structures with the fewer or no vessel
traffic. It necessitates continuous monitoring of the non-
native species on these artificial coastal defense structures,

which should be considered a hotspot for bio-pollution mon-
itoring. This study warrants in-depth studies on physiology,
life spawn, larval settlement pattern, prey-predation and
fouling efficiency, which would help prepare a proper man-
agement plan for the artificial coastal defense structures.
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