PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 79 | 4 |

Tytuł artykułu

Spinal cord regeneration using dental stem cell‑based therapies

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Spinal cord injury (SCI) is traumatic central nervous system damage resulting in a motor and sensory dysfunction that usually causes a severe and permanent paralysis. Today, the treatment of SCI principally includes surgical treatment, pharmacological treatments and rehabilitation therapies, which target secondary events determining only some clinical improvements in patients. SCI is still a worldwide problem in the clinic and remains a big challenge for neuroscientists and neurologists throughout the world. Therefore, new therapies able to restore the function of the injured spinal cord are urgently needed for SCI patients. An interesting approach to overcome the growth inhibiting properties present in the injured spinal cord is to transplant cells with reparative and protective properties such as mesenchymal stem cells. In this context, human dental‑derived stem cells represent a promising new cell source for cell‑based therapies. It has been shown that dental‑derived stem cells isolated from dental pulp, named dental pulp stem cells or stem cells from human exfoliated deciduous teeth induce functional improvement after SCI in animal models. This review summarises the current state of the literature regarding the use of dental‑derived stem cells for spinal cord repair and regeneration and highlights the neuroprotective effects of these cells when administered after spinal cord injury.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

79

Numer

4

Opis fizyczny

p.319-327,fig.,ref.

Twórcy

autor
  • Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
autor
  • Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
autor
  • Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
autor
  • Vascular and Hernia Surgery, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
autor
  • Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
autor
  • Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
autor
  • Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
autor
  • Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
autor
  • Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China

Bibliografia

  • Ahuja CS, Wilson JR, Nori S, Kotter MR, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primer 3: 17018.
  • Alizadeh A, Dyck SM, Karimi‑Abdolrezaee S (2019) Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mech‑ anisms. Front Neurol 10: 282.
  • Almeida FM de, Marques SA, Ramalho B dos S, Rodrigues RF, Cadilhe DV, Furtado D, Kerkis I, Pereira LV, Rehen SK, Martinez AMB (2011) Human dental pulp cells: a new source of cell therapy in a mouse model of com‑ pressive spinal cord injury. J Neurotrauma 28: 1939–1949.
  • Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S (2008) Adult human den‑ tal pulp stem cells differentiate toward functionally active neurons un‑ der appropriate environmental cues. Stem Cells 26: 1787–1795.
  • Beyer F, Agrelo IS, Küry P (2019) Do neural stem cells have a choice? Het‑ erogenic outcome of cell fate acquisition in different injury models. Int J Mol Sci 20: E455.
  • Bianco J, De Berdt P, Deumens R, Des Rieux A (2016) Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it? Cell Mol Life Sci 73: 1413–1437.
  • Dasari VR, Veeravalli KK, Dinh DH (2014) Mesenchymal stem cells in the treatment of spinal cord injuries: A review. World J Stem Cells 6: 120–133.
  • De Berdt P, Bottemanne P, Bianco J, Alhouayek  M, Diogenes A, Llyod A, Gerardo‑Nava J, Brook GA, Miron V, Muccioli GG (2018) Stem cells from human apical papilla decrease neuro‑inflammation and stimulate oligo‑ dendrocyte progenitor differentiation via activin‑A secretion. Cell Mol Life Sci 75: 2843–2856.
  • De Berdt P, Vanacker J, Ucakar B, Elens  L, Diogenes A, Leprince J, Deumens R, Rieux A des (2015) Dental apical papilla as therapy for spi‑ nal cord injury. J Dent Res 94: 1575–1581.
  • Deng J, Zhang Y, Xie Y, Zhang L, Tang P (2018) Cell transplantation for spi‑ nal cord injury: tumorigenicity of induced pluripotent stem cell‑derived neural stem/progenitor cells. Stem Cells Int 2018: 5653787.
  • Dietrich W (2015) Protection and repair after spinal cord injury: Accomplish‑ ments and future directions. Top Spinal Cord Inj Rehabil 21: 174–187.
  • Doulames VM, Plant GW (2016) Induced pluripotent stem cell therapies for cervical spinal cord injury. Int J Mol Sci 17: 530.
  • Gazdic  M, Volarevic  V, Harrell C, Fellabaum C, Jovicic N, Arsenijevic N, Stojkovic  M (2018) Stem cells therapy for spinal cord injury. Int J Mol Sci 19: 1039.
  • Giuliani A, Manescu A, Langer  M, Rustichelli F, Desiderio  V, Paino F, De Rosa A, Laino L, d’Aquino R, Tirino V, Papaccio G (2013) Three years after transplants in human mandibles, histological and in-line holoto‑ mography revealed that stem cells regenerated a compact rather than
  • a  spongy bone: biological and clinical implications. Stem Cells Transl Med 2: 316–324.
  • Gómez RM, Sánchez MY, Portela-Lomba M, Ghotme K, Barreto GE, Sierra J, Moreno- Flores MT (2018) Cell therapy for spinal cord injury with olfac‑ tory ensheathing glia cells (OECs). Glia 66: 1267–1301.
  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 97: 13625–13630.
  • Guillaume DJ, Zhang SC (2008) Human embryonic stem cells: A potential source of transplantable neural progenitor cells. Neurosurg Focus 24: E3.
  • Hayta E, Elden H (2018) Acute spinal cord injury: A review of pathophysiol‑ ogy and potential of non‑steroidal anti‑inflammatory drugs for pharma‑ cological intervention. J Chem Neuroanat 87: 25–31.
  • Hofstetter C, Schwarz E, Hess D, Widenfalk J, El Manira A, Prockop DJ, Olson  L (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci 99: 2199–2204.
  • Hu H, Granger N, Jeffery N (2016) Pathophysiology, clinical importance, and management of neurogenic lower urinary tract dysfunction caused by suprasacral spinal cord injury. J Vet Intern Med 30: 1575–1588.
  • Huang GJ, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88: 792–806.
  • Jensen MP, Kuehn CM, Amtmann D, Cardenas DD (2007) Symptom bur‑ den in persons with spinal cord injury. Arch Phys Med Rehabil 88: 638–645.
  • Kabatas S, Demir C, Civelek E, Yilmaz I, Kircelli A, Yilmaz C, Akyuva Y, Karaoz  E (2018) Neuronal regeneration in injured rat spinal cord af‑ ter human dental pulp derived neural crest stem cell transplantation. Bratisl Lek Listy 119: 143.
  • Kang SK, Shin MJ, Jung JS, Kim YG, Kim CH (2006) Autologous adipose tis‑ sue‑derived stromal cells for treatment of spinal cord injury. Stem Cells Dev 15: 583–594.
  • Karamzadeh R, Eslaminejad MB (2013) Dental‑related stem cells and their potential in regenerative medicine. In: Regenerative Medicine and Tis‑ sue Engineering InTech,. Karaöz E, Demircan PC, Sağlam Ö, Aksoy A, Kaymaz F, Duruksu G (2011) Human dental pulp stem cells demonstrate better neural and epitheli‑ al stem cell properties than bone marrow‑derived mesenchymal stem cells. Histochem Cell Biol 136: 455.
  • Khazaei M, Ahuja CS, Fehlings MG (2017) Induced pluripotent stem cells for traumatic spinal cord injury. Front Cell Dev Biol 4: 152.
  • Kim YH, Ha KY, Kim SI (2017) Spinal cord injury and related clinical trials. Clin Orthop Surg 9: 1–9.
  • Lee B, Cripps R, Fitzharris M, Wing P (2014) The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spi‑ nal Cord 52: 110–116.
  • Lee J, Thumbikat P (2015) Pathophysiology, presentation and management of spinal cord injury. Surgery 33: 238–247.
  • Li X, Yang C, Li L, Xiong J, Xie L, Yang B, Yu M, Feng L, Jiang Z, Guo W (2015) A therapeutic strategy for spinal cord defect: human dental follicle cells combined with aligned PCL/PLGA electrospun material. BioMed Res Int 2015.
  • Lin L, Lin H, Bai S, Zheng L, Zhang X (2018) Bone marrow mesenchymal stem cells (BMSCs) improved functional recovery of spinal cord injury partly by promoting axonal regeneration. Neurochem Int 115: 80–84.
  • Luo L, Albashari AA, Wang X, Jin L, Zhang Y, Zheng L, Xia J, Xu H, Zhao Y, Xiao J (2018) Effects of Transplanted heparin‑poloxamer hydrogel com‑ bining dental pulp stem cells and bFGF on spinal cord injury repair. Stem Cells Int 2018.
  • Martens  W, Sanen K, Georgiou  M, Struys T, Bronckaers A, Ameloot  M, Phillips J, Lambrichts I (2014) Human dental pulp stem cells can differ‑ entiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue‑engineered collagen construct in vitro. FASEB J 28: 1634–1643.
  • Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2013) Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 54: 7544–7556.
  • Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2017) Concise re‑ view: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair. Stem Cells 35: 61–67.
  • Miura  M, Gronthos S, Zhao  M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci 100: 5807–5812.
  • Mohamadi Y, Noori Moghahi SMH, Mousavi  M, Borhani‑Haghighi  M, Abolhassani F, Kashani IR, Hassanzadeh G (2019) Intrathecal transplan‑ tation of Wharton’s jelly mesenchymal stem cells suppresses the NLRP1 inflammasome in the rat model of spinal cord injury. J Chem Neuroanat 97: 1–8.
  • Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann K (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24: 155–165.
  • Mukhamedshina YO, Gracheva OA, Mukhutdinova DM, Chelyshev YA, Rizvanov AA (2019) Mesenchymal stem cells and the neuronal micro‑ environment in the area of spinal cord injury. Neural Regen Res 14: 227–237.
  • Nakamura  M, Okano H (2013) Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res 23: 70–80.
  • Nicola FC, Rodrigues LP, Crestani T, Quintiliano K, Sanches EF, Willborn S, Aristimunha D, Boisserand L, Pranke P, Netto CA (2016) Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury. Braz J Med Biol Res 49: e5319.
  • Nicola FC, Marques MR, Odorcyk F, Arcego DM, Petenuzzo L, Aristimunha D, Vizuete A, Sanches EF, Pereira DP, Maurmann N, Dal‑ maz C, Pranke P, Netto CA (2017) Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Res 1663: 95–105.
  • Nicola F, Marques MR, Odorcyk F, Petenuzzo L, Aristimunha D, Vizuete A, Sanches EF, Pereira DP, Maurmann N, Gonçalves CA (2019) Stem cells from human exfoliated deciduous teeth modulate early astrocyte re‑ sponse after spinal cord contusion. Mol Neurobiol 56: 748–760.
  • Nosrat IV, Widenfalk J, Olson L, Nosrat CA (2001) Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and res‑ cue motoneurons after spinal cord injury. Dev Biol 238: 120–132.
  • Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a  nugget of this multiply cascade. Acta Neurobiol Exp 71: 281–299.
  • Pearl JI, Lee AS, Leveson‑Gower DB, Sun N, Ghosh Z, Lan F, Ransohoff J, Negrin RS, Davis MM, Wu JC (2011) Short‑term immunosuppression pro‑ motes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell 8: 309–317.
  • Raslan AM, Nemecek AN (2012) Controversies in the surgical management of spinal cord injuries. Neurol Res Int 2012: 417834.
  • Rowland JW, Hawryluk GW, Kwon B, Fehlings MG (2008) Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 25: E2.
  • Sadowsky CL, McDonald JW (2009) Activity‑based restorative therapies: Concepts and applications in spinal cord injury‑related neurorehabilita‑ tion. Dev Disabil Res Rev 15: 112–116.
  • Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S (2012) Human dental pulp‑derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro‑regenerative mech‑ anisms. J Clin Invest 122: 80–90.
  • Shultz RB, Zhong Y (2017) Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res 12: 702.
  • Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basics to clinical: a com‑ prehensive review on spinal cord injury. Prog Neurobiol 114: 25–57.
  • Snyder EY, Teng YD (2012) Stem cells and spinal cord repair. N Engl J Med 366: 1940–1942.
  • Taghipour Z, Karbalaie K, Kiani A, Niapour A, Bahramian H, Nasr‑Esfahani MH, Baharvand H (2011) Transplantation of undifferentiated and induced hu‑ man exfoliated deciduous teeth‑derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells Dev 21: 1794–1802.
  • Tukmachev D, Forostyak S, Koci Z, Zaviskova K, Vackova I, Vyborny K, Sandvig I, Sandvig A, Medberry CJ, Badylak SF (2016) Injectable extracel‑ lular matrix hydrogels as scaffolds for spinal cord injury repair. Tissue Eng Part A 22: 306–317.
  • Volarevic  V, Markovic BS, Gazdic  M, Volarevic A, Jovicic N, Arsenijevic N, Armstrong  L, Djonov  V, Lako  M, Stojkovic  M (2018) Ethical and safety issues of stem cell‑based therapy. Int J Med Sci 15: 36–45.
  • Yamamoto A, Sakai K, Matsubara K, Kano F, Ueda M (2014) Multifaceted neuro‑regenerative activities of human dental pulp stem cells for func‑ tional recovery after spinal cord injury. Neurosci Res 78: 16–20.
  • Yang C, Li X, Sun L, Guo W, Tian W (2017) Potential of human dental stem cells in repairing the complete transection of rat spinal cord. J Neural Eng 14: 026005.
  • Yuan X, Wu Q, Wang P, Jing Y, Yao H, Tang Y, Li Z, Zhang H, Xiu R (2019) Exosomes derived from pericytes improve microcirculation and protect blood–spinal cord barrier after spinal cord injury in mice. Front Neurosci 13: 319.
  • Yuan YM, He C (2013) The glial scar in spinal cord injury and repair. Neuro‑ sci Bull 29: 421–435.
  • Zhang G, Shang B, Yang P, Cao Z, Pan Y, Zhou Q (2012) Induced pluripo‑ tent stem cell consensus genes: implication for the risk of tumorigenesis and cancers in induced pluripotent stem cell therapy. Stem Cells Dev 21: 955–964.
  • Zhang J, Li D, Shen A, Mao H, Jin H, Huang W, Xu D, Fan J, Chen J, Yang L (2013) Expression of RBMX after spinal cord injury in rats. J Mol Neurosci 49: 417–429.
  • Zhang J, Lu X, Feng G, Gu Z, Sun Y, Bao G, Xu G, Lu Y, Chen J, Xu L (2016) Chitosan scaffolds induce human dental pulp stem cells to neural differ‑ entiation: potential roles for spinal cord injury therapy. Cell Tissue Res 366: 129–142.
  • Zhou X, He X, Ren Y (2014) Function of microglia and macrophages in sec‑ ondary damage after spinal cord injury. Neural Regen Res 9: 1787.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5ea3cc05-38c6-45cd-8fef-5987792408ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.