PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 30 |

Tytuł artykułu

Biochar from residual biomass in Turkey, and possibility of return to the soil: an estimation of the supply and demand

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to analyse the potential of production and utilization of biochar as a marketable product in agriculture for Turkey. Towards this aim, the distribution of arable land, crop residues and soil types of Turkey were identified. The biochar production potential was evaluated depending on prominent residual biomass streams in Turkey. In addition, how much biochar would be needed for arable soil types found in Turkey was estimated according to previous studies which investigated the effect of biochar on similar soil taxonomy and/or plant grown. Total crop production is focused on southern, western and central Anatolia, although the arable lands of Turkey prevail in seven regions. The residues of wheat, barley, corn and cotton stalk, tea, banana, hazelnuts and forest were found to be higher than other residuals in different regions and they could be suitable for biochar production. Furthermore, it was highlighted that the low water holding capacity of soil, alkalinity, salinity and soil pollution impeded the crop productivity. Although, the biochar produced from prominent residues was one-fiftieth less than that of total estimated amount of biochar needed for arable soils, it obviously improves the plant growth and soil characteristics, when used together with fertilizer, especially for zonal and intrazonal soils. At this point, it could be focused on the long-term field experiments due to determine the special and productive addition rate of biochar for Turkey, and biochar addition to the soil could be channelled into threatened priority arable lands by the public authorities.

Wydawca

-

Rocznik

Numer

30

Opis fizyczny

p.10-24,fig.,ref.

Twórcy

autor
  • Institute of Solar Energy, Ege University, 35100 Bornova/Izmir, Turkey
autor
  • Institute of Solar Energy, Ege University, 35100 Bornova/Izmir, Turkey

Bibliografia

  • Ahmed H.P., Schoenau J.J., 2015. Effects of Biochar on Yield, Nutrient Recovery, and Soil Properties in a Canola (Brassica napus L)-Wheat (Triticum aestivum L) Rotation Grown under Controlled Environmental Conditions. BioEnergy Research, 8: 1183-1196.
  • Akhtar S.S., Andersen M.N, Liu F., 2015. Biochar Mitigates Salinity Stress in Potato. Journal of Agronomy and Crop Science, 201: 368-378.
  • Aksoy E., Panagos P., Montanarella L., Jones A., 2010. Integration of the Soil Database of Turkey into European Soil Database 1:1.000.000. European Commission JRC Research Report, EUR 24295EN. Italy.
  • Al-Wabel M.I., Usman A.R.A., El-Naggar A.H., Aly A.A., Ibrahim H.M., Elmaghraby S., Al-Omran A., 2015. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi Journal of Biological Sciences, 22: 503-511.
  • Amonette J., Kim J., Russell C., Hendricks M., Bashore C., Rieck B., 2006. Soil charcoal – a potential humification catalyst. In ‘ASA-CSSA-SSSA International Annual Meetings’ 12-16 November 2006.
  • Anon., 2016. Turkey’s Soils, http://www.gencziraat.com/Toprak-Bilgisi/Turkiye-Topraklari-8.html (in Turkish), Date accessed: May 10, 2017.
  • Aydinalp C., 2000. Soil Problems of Turkey. Anadolu, Journal of Aegean Agricultural Research Institute, 10(1): 135-143. (in Turkish)
  • Bamminger C., Zaiser N., Zinsser P., Lamers M., Kammann C., Marhan S., 2014. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biology and Fertility of Soils, 50: 1189-1200.
  • Bargmann I., Rillig MC., Kruse A., Greef J.M, Kücke M., 2014. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. Journal of Plant Nutrition and Soil Science, 177: 48-58.
  • Baronti S., Alberti G., Delle Vedove G., Di Gennaro F., Fellet G., Genesio L., Miglietta F., Peressotti A., Vaccari F.P., 2010. The Biochar Option to Improve Plant Yields: First Results From Some Field and Pot Experiments in Italy. Italian Journal of Agronomy, 5: 3-11.
  • Baronti S., Vaccari F.P., Miglietta F., Calzolari C., Lugato E., Orlandini S., Pini R., Zulian C., Genesio L., 2014. Impact of biochar application on plant water relations in Vitis vinifera (L.). European Journal of Agronomy, 53: 38-44.
  • Bascetincelik A., 2006. A Guide on Exploitation of Agricultural Residues in Turkey – Final Report ANNEX XIV, LIFE03TCY/TR/000061, pp 686-761.
  • Basu P., 2013. Biomass Gasification, Pyrolysis and Torrefaction Practical Design and Theory. USA: Elsevier. ISBN: 978-0-12-396488-5.
  • Beesley L., Moreno-Jimenez E., Gomez-Eyles J.L., Harris E., Robinson B., Sizmur T., 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159: 3269-3282.
  • BEPA, 2016. Ministry of Energy and Natural Resources - Turkish Biomass Energy Potential Map. http://bepa.yegm.gov.tr/ (in Turkish), Date accessed: May 10, 2017.
  • Bergman P.C.A., Boersma A.R., Zwart R.W.R., Kiel J.H.A., 2005. Torrefaction for biomass co-firing in existing coal-fired power stations “BIOCOAL”. Report ECN-C-05-013. Petten, The Netherlands: ECN.
  • Berrueco C., Recari J., Gueell B.M., del Alamo G., 2014. Pressurized gasification of torrefied woody biomass in a lab scale fluidized bed. Energy, 70: 68-78.
  • Bruun E.W., Petersen C.T., Hansen E., Holm J.K., Hauggaard-Nielsen H., 2014. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use and Management, 30: 109-118.
  • Busch D., Glaser B., 2015. Stability of co-composted hydrochar and biochar under field conditions in a temperate soil. Soil Use and Management, 31: 251-258.
  • Cangir C., Boyraz D., 2000. Ülkemizde Yanlış ve Amaç Dışı Arazi Kullanımı. Türkiye Ziraat Mühendisliği V. Teknik Kongresi. TMMOB Ziraat Mühendisleri Odası. 17-19 Ocak. Ankara. 365-392.
  • Case S.D., McNamara N.P., Reay D.S., Whitaker J., 2014. Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop? GCB Bioenergy, 6: 76-89.
  • Chaganti V.N., Crohn D.M., Simunek J., 2015. Leaching and reclamation of a biochar and compost amended saline-sodic soil with moderate SAR reclaimed water. Agricultural Water Management, 158: 255-265.
  • Chen Q., Zhou J.S., Liu B.J., Mei Q.F., Luo Z.Y., 2011. Influence of torrefaction pretreatment on biomass gasification technology. Chinese Science Bulletin, 56: 1449-1456.
  • Chew J.J., Doshi V., 2011. Recent advances in biomass pretreatment - Torrefaction fundamentals and technology. Renewable & Sustainable Energy Reviews, 15: 4212-4222.
  • Choppala G.K., Bolan N.S., Megharaj M., Chen Z., Naidu R., 2011. The Influence of Biochar and Black Carbon on Reduction and Bioavailability of Chromate in Soils. Journal of Environmental Quality, 41: 1175-1184.
  • Clough T.J., Condron L.M., Kammann C., Müller C., 2013. A Review of Biochar and Soil Nitrogen Dynamics. Agronomy, 3: 275-293.
  • de la Rosa J.M., Paneque M., Miller A.Z., Knicker H., 2014. Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Science of the Total Environment, 499: 175-184.
  • Deng J., Wang G.J., Kuang J.H., Zhang Y.L., Luo Y.H., 2009. Pretreatment of agricultural residues for co-gasification via torrefaction. Journal of Analytical and Applied Pyrolysis, 86: 331-337.
  • Dengiz O., 2007. Characteristics and Classification of Arid Region Soils: Salt Lake Specially Protected Area (Tuz Gölü-Turkey). Asian Journal of Chemistry, 19(3): 2316-2324.
  • Dizdar M.Y., 2003. Soil Resources of Turkey. Chamber of Agricultural Engineers, Technical Publication Series No:2, Kozan Ofset. Ankara. Turkey. (in Turkish)
  • Dogan O., 2012. Soil Mapping Study in Turkey. Republic of Turkey Ministry of Forest and Water Affairs. General Directorate of Combation Desertification and Erosion. Presentation. Ankara. Turkey.
  • Domene X., Mattana S., Hanley K., Enders A., Lehmann J., 2014. Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biology & Biochemistry, 72: 152-162.
  • Duncan A., Pollard A., Fellouah H., 2013. Torrefied, Spherical Biomass Pellets through the Use of Experimental Design. Applied Energy, 101: 237-243.
  • Duzgun M., Kapur S., Cangir C., Akca E., Boyraz D., Ozevren E., Gulsen N., 2006, Turkey’s National Action Program on Combating Desertification. Ministry of Environment and Forestry Publication No: 250 ISBN 975-7347-51-5.
  • EBC, 2016a. European Biochar Certificate - Guidelines for a Sustainable Production of Biochar. European Biochar Foundation (EBC), Arbaz, Switzerland. http://www.europeanbiochar.org/biochar/media/doc/1502720294769.pdf. Version 6.2E of 04th February 2016, Date accessed: May 10, 2017.
  • EBC, 2016b. Comparison of European Biochar Certificate and IBI Biochar Standards, http://www.european-biochar.org/biochar/media/doc/IBI-EBC.pdf, Date accessed: May 10, 2017.
  • Elzobair K.A., Stromberger M.E., Ippolito J.A., Lentz R.D., 2016. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere, 142: 145-152.
  • Erol A.S., Shein E., Milanovskiy E., Mikailsoy F., Er F., Ersahin S., 2015. Physical and microbiological properties of alluvial calcareous Çumra province soils (Central Anatolia, Turkey). Eurasian Journal of Soil Science, 4(2): 76-143.
  • Foster E.J., Hansen N., Wallenstein M., Cotrufo M.F., 2016. Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agriculture, Ecosystems and Environment, 233: 404-414.
  • Freddo A., Cai C., Reid B.J., 2012. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environmental Pollution, 171: 18-24.
  • Hale S., Lehmann J., Rutherford D., Zimmerman A., Bachmann R.T., Shitumbanuma V.O., Toole A., Sundqvist K.L., Arp H.P.H., Cornelissen G., 2012. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental Science & Technology, 46: 2830-2838.
  • Ippolito J.A., Laird D.A., Busscher W.J., 2012. Environmental Benefits of Biochar. Journal of Environmental Quality, 41: 967-972.
  • Jindo K., Sánchez-Monedero M.A., Hernández T., García C., Furukawa T., Matsumoto K., Sonoki T., Bastida F., 2012. Biochar influences the microbial community structure during manure composting with agricultural wastes. Science of the Total Environment, 416: 476-481.
  • Jones D.L., Rousk J., Edwards-Jones G., DeLuca T.H., Murphy D.V., 2012. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology & Biochemistry, 45: 113-124.
  • Joseph S.D., Camps-Arbestain M., Lin Y., Munroe P., Chia C.H., Hook J., van Zwieten L., Kimber S., Cowie A., Singh B.P., Lehmann J., Foidl N., Smernik R.J., Amonette J.E., 2010. An investigation into the reactions of biochar in soil. Australian Journal of Soil Research, 48: 501-515.
  • Kapur S., Akca E., Ozden D.M., Sakarya N., Çimrin K.M., Alagoz U., Ulusoy R., Darici C., Kaya Z., Düzenli S., Gulcan H., 2002. Land degradation in Turkey. The JRC Enlargement Action Workshop 10-B: Land degradation. Edited by: Jones R.J.A. and Montanarella L. Ispra-Itally. 303-318.
  • Karadag S., 2016, Maps of Turkey, https://cografyabilim.wordpress.com/tag/turkiye-buyuk-toprak-gruplari-harita-resmi/(in Turkish), Date accessed: May 10, 2017.
  • Keiluweit M., Kleber M., Sparrow M.A., Simoneit B.R.T., Prahl F.G., 2012. Solvent-Extractable Polycyclic Aromatic Hydrocarbons in Biochar: Influence of Pyrolysis Temperature and Feedstock. Environmental Science & Technology, 46: 9333-9341.
  • Kilic K., Sayar S., 2006. Organic Soils in the Arid Small Catchments in the Middle Anatolia Region of Turkey. Journal of Agronomy, 5(I): 23-27.
  • Kilic S., 2011. Agroecological land use potential of Amik Plain, Turkey. Turkish Journal of Agriculture and Forestry, 35: 33-442.
  • Kloss S., Zehetner S., Dellantonio A., Hamid R., Ottner F., Liedtke V., Schwanninger M., Gerzabek M.H., Soja G., 2012. Characterization of Slow Pyrolysis Biochars: Effects of
  • Feedstocks and Pyrolysis Temperature on Biochar Properties. Journal of Environmental Quality, 41: 990-1000.
  • Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D., 2011. Biochar effects on soil biota - A review. Soil Biology & Biochemistry, 43: 1812-1836.
  • Lehndorff E., Houtermans M., Winkler P., Kaiser K., Kölbl A., Romani M., Said-Pullicino D., Utami S.R., Zhang G.L., Cao Z.H., Mikutta R., Guggenberger G., Amelung W., 2016. Black carbon and black nitrogen storage under long-term paddy and non-paddy management in major reference soil groups. Geoderma, 284: 214-225.
  • Li H., Liu X., Legros R., Bi X.T., Lim C.J., Sokhansanj S., 2012. Pelletization of Torrefied Sawdust and Properties of Torrefied Pellets. Applied Energy, 93: 680-685.
  • Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O’Neill B., Skjemstad J.O., Thies J., Luizao F.J., Petersen J., Neves E.G., 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70: 1719-1730.
  • Lin X.W., Xie Z.B., Zheng J.Y., Liu Q., Bei Q.C., Zhu J.G., 2015. Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil. European Journal of Soil Science, 66:329-338.
  • Marousek J., Vochozka M., Plachy J., Zak J. 2017. Glory and misery of biochar, Clean Technologies and Environmental Policy, 19: 311-317.
  • Mete F.Z., Mia S., Dijkstra F.A., Abuyusuf Md., Hossain A.S.M.I., 2015. Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil. Pedosphere 25(5): 713-719.
  • Mimmo T., Panzacchi P., Baratieri M., Davies C.A., Tonon G., 2014. Effect of pyrolysis temperature on miscanthus (Miscanthus x giganteus) biochar physical, chemical and functional properties. Biomass & Bioenergy, 62: 149-157.
  • Mohanty P., Nanda S., Pant K.K., Naik S., Kozinski J.A., Dalai A.K., 2013. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: Effects of heating rate. Journal of Analytical and Applied Pyrolysis, 104: 485-493.
  • Nguyen B.T., Lehmann J., 2009. Black carbon decomposition under varying water regimes. Organic Geochemistry, 40: 846-853.
  • Nguyen B.T., Lehmann J., Hockaday W.C., Joseph S., Masiello C.A., 2010. Temperature Sensitivity of Black Carbon Decomposition and Oxidation. Environmental Science & Technology, 44: 3324-3331.
  • Nhuchhen D.R., Basu P., Acharya B., 2014. A comprehensive review on biomass torrefaction. International Journal of Renewable Energy and Biofuels, Article ID 506376: 56 pages.
  • Njoku C., Uguru B.N., Chibuike C.C., 2016. Use of Biochar to Improve Selected Soil Chemical Properties, Carbon Storage and Maize Yield in an Ultisol in Abakaliki Ebonyi State, Nigeria. International Journal of Environmental & Agriculture Research, 2(1):15-22.
  • Novak J.M., Busscher W.J., Laird D.L., Ahmedna M., Watts D.W., Niandou M.A.S., 2009. Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. Soil Science, 174: 105-112.
  • Olmo M., Alburquerque J.A., Barrón V., del Campillo M.C., Gallardo A., Fuentes M., Villar R., 2014. Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biology and Fertility of Soils, 50: 1177-1187.
  • Ozsahin E., Atasoy A., 2015. The Soils of the Lower Asi River Basin. Gaziantep University Journal of Social Sciences, 14(1): 127-153. (in Turkish)
  • Ozsoy G., Aksoy E., 2012. Genesis and Classification of some Mollisols Developed under Forest Vegetation in Bursa, Turkey. International Journal of Agriculture and Biology, 14: 75-80.
  • Ozyazici M.A., Aydogan M., Bayrakli B., Kesim E., Seker F., Dengiz O., Urla O., Yildiz H., Unal E., 2013. Orta ve Doğu Karadeniz Bölgesi Tarım Topraklarının Bitki Besin Maddesi ve Potansiyel Toksik Element Kapsamlarının Belirlenmesi, Veri Tabanı Oluşturulması ve Haritalanması. GTHB, Black Sea Directorate of Agricultural Research Institute - TAGEM, Samsun. (in Turkish)
  • Ozyazici M.A., Dengiz O., Imamoglu A., 2014. Determination of some land and soil characteristics of Siirt province with geographic information system analysis. Journal of Turkish Agricultural Research, 1: 128-137. (in Turkish)
  • Pach M., Zanzi R., Bjornbom E., 2002. Torrefied biomass a substitute for wood and charcoal. 6th Asia-pacific international symposium on combustion and energy utilization. Kuala Lumpur.
  • Prayogo C., Jones J.E., Baeyens J., Bending G.D., 2014. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biology and Fertility of Soils, 50: 695-702.
  • Prins M.J., Ptasinski K.J., Janssen F., 2006. More efficient biomass gasification via torrefaction. Energy, 31: 3458-3470.
  • Rees F., Simonnot M.O., Morel J.L., 2014. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. European Journal of Soil Science, 65: 149-161.
  • Rogovska N., Laird D.A., Rathke S.J., Karlen D.L., 2014. Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma, 230-231: 340-347.
  • Schneider M.P.W., Hilf M., Vogt U.F., Schmidt M.W.I., 2010. The benzene polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200°C and 1000°C. Organic Geochemistry, 41: 1082-1088.
  • Šimanský V., Horák J., Igaz D., Jonczak J., Markiewicz M., Felber R, Rizhiya E.Y., Lukac M., 2016. How dose of biochar and biochar with nitrogen can improve the parameters of soil organic matter and soil structure? Biologia, 71(9): 1-7.
  • Spokas K.A., 2010. Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Management, 1: 289-303.
  • Spokas K.A., Novak J.M., Stewart C.E., Cantrell K.B., Uchimiya M., DuSaire M.G., Ro K.S., 2011. Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85: 869-882.
  • Steinbeiss S., Gleixner G., Antonietti M., 2009. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology & Biochemistry, 41: 1301-1310.
  • Sumer S.K., Kavdir Y., Çiçek G., 2016. Determining The Potential of Biochar Production from Agricultural and Livestock Wastes in Turkey. KSU Journal of Natural Science, 19(4): 379-387. (in Turkish)
  • Sun J., He F., Shao H., Zhang Z., Xu G., 2016. Effects of biochar application on Suaeda salsa growth and saline soil properties. Environmental Earth Sciences, 75: 630 (6 pages).
  • Sun Z., Bruun E.W., Arthur E., Jonge L.W., Moldrup P., Nielsen H.H., Elsgaard L., 2014. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils. Biology and Fertility of Soils, 50: 1087-1097.
  • Sungur A., Soylak M., Ozcan H., 2016. Chemical fractionation, mobility and environmental impacts of heavy metals in greenhouse soils from Çanakkale, Turkey. Environmental Earth Sciences, 75: 334.
  • Svoboda K., Pohorely M., Hartman M., Martinec J., 2009. Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Processing Technology, 90: 629-635.
  • Tetik M., Dasdemir I., Guven M., Dogukan H., 1992. Stere conversion factors and stere weight of Scotch pine (Pinus sylvestris L.) fuel-wood in periodic times in Eastern Anatolia Region. Journal of the Turkish Forest Research Institute, No:231, 31-65. (in Turkish)
  • Toptas A., Yildirim Y., Duman G., Yanik J., 2015. Combustion behaviour of different kinds of torrefied biomass and their blends with lignite. Bioresource Technology, 177: 328-336.
  • Tsalidis G.A., Joshi Y., Korevaar G., de Jong W., 2014. Life cycle assessment of direct co-firing of torrefied and/or pelletized woody biomass with coal in The Netherlands. Journal of Cleaner Production, 81: 168-177.
  • Tubitak, 2016. Tubitak 1003 – Energy. http://www.tubitak.gov.tr/sites/default/files/cp2015-2017_fs_0.swf (in Turkish), Date accessed: May 10, 2017.
  • Tumuluru J.S., Wright C.T., Hess J.R., Kenney K.L., 2011. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining, 5: 683-707.
  • Turan H.S., Aydogdu E., Pekcan T., Colakoglu H., 2013. Microelement Status and Soil and Plant Relationships of Olive Groves in West Anatolia Region of Turkey. Communications in Soil Science and Plant Analysis, 44:1-4, 80-88.
  • TurkStat, 2016. Turkish Statistical Institute – Agricultural and Forest Land. www.tuik.gov.tr/PreIstatistikTablo.do?istab_id=53 (in Turkish), Date accessed: May 10, 2017.
  • Vaccari F.P., Baronti S., Lugato E., Genesio L., Castaldi S., Fornasier F., Miglietta F., 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy, 34: 231-238.
  • van der Stelt M.J.C., Gerhauser H., Kiel J.H.A., Ptasinski K.J., 2011. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass & Bioenergy, 35: 3748-3762.
  • van Zwieten L., Kimber S., Morris S., Chan K.Y., Downie A., Rust J., Joseph S., Cowie A., 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327: 235-246.
  • Ventura M., Sorrenti G., Panzacchi P., George E., Tonon G., 2012. Biochar Reduces Short-Term Nitrate Leaching from A Horizon in an Apple Orchard. Journal of Environmental Quality, 42:76-82.
  • Wagner A., Kaupenjohann M., 2015. Biochar addition enhanced growth of Dactylis glomerata L. and immobilized Zn and Cd but mobilized Cu and Pb on a former sewage field soil. European Journal of Soil Science, 66: 505-515.
  • Wang Y., Lin Y., Chiu P.C., Imhoff P.T., Guo M., 2015a. Phosphorus release behaviours of poultry litter biochar as a soil amendment. Science of the Total Environment, 512-513: 454-463.
  • Wang X., Song D., Liang G., Zhang Q., Ai C., Zhou W., 2015b. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Applied Soil Ecology, 96: 265-272.
  • Xu G., Zhang Y., Sun J., Shao H., 2016. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Science of the Total Environment, 568: 910-915.
  • Yalcin F., Kilic S., Nyamsari D., Yalcin M.G., Kilic M., 2016. Principal Component Analysis of Integrated Metal Concentrations of Bogacayi Riverbank Sediments in Turkey. Polish Journal of Environmental Studies, Vol. 25, No. 2: 471-485.
  • Yang Y., Ma S., Zhao Y., Jing M., Xu Y., Chen J., 2015. A Field Experiment on Enhancement of Crop Yield by Rice Straw and Corn Stalk-Derived Biochar in Northern China. Sustainability, 7: 13713-13725.
  • Yatkin S., Bayram A., 2011. Investigation of Chemical Compositions of Urban, Industrial, Agricultural, and Rural Top-soils in Izmir, Turkey. Clean – Soil, Air, Water, 39(6): 522-529.
  • Younis U., Qayyum M.F., Shah M.H.R., Danish S., Shahzad A.N., Malik S.A., Mahmood S., 2015. Growth, survival, and heavy metal (Cd and Ni) uptake of spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) in a biochar-amended sewage-irrigated contaminated soil. Journal of Plant Nutrition and Soil Science, 178: 209-217.
  • Yuan J.H., Xu R.K., 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27: 110-115.
  • Yue Y., Guo W.N., Lin Q.M., Li G.T., Zhao X.R., 2016. Improving salt leaching in a simulated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunflower straw (Helianthus annuus), and cow manure. Journal of Soil and Water Conservation, 71(6): 467-475.
  • Zeng A., Liao Y.C., Zhang J.L., Sui Y.W., Wen X.X., 2013. Effects of Biochar on Soil Moisture, Organic Carbon and Available Nutrient Contents in Manural Loessial Soils. Journal of Agro-Environment Science, 32(5): 1009-1015.
  • Zhang J., Lu F., Zhang H., Shao L., Chen D., He P., 2015. Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication. Biotechnology Environmental Sciences, 5(9406): 1-8.
  • Zhang Q., Dijkstra F.A., Liu X., Wang Y., Lu N., 2014. Effects of Biochar on Soil Microbial Biomass after Four Years of Consecutive Application in the North China Plain. PLoS ONE, 9(7): e102062.
  • Zhu Q.H., Peng X.H., Huang T.Q., Xie Z.B., Holden N.M., 2014. Effect of biochar addition on maize growth and nitrogen use efficiency in acidic red soils. Pedosphere, 24(6): 699-708.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5e6dd90d-72e0-4329-9241-3146263c330f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.