PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 72 |

Tytuł artykułu

Effect of salt stress on prenol lipids in the leaves of Tilia 'Euchlora'

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Soil contamination caused by the NaCl used to de-ice slippery roads in winter is now recognized as one of the major causes of nutrient disorders and death in urban trees. It is believed that polyisoprenoids may have a specific role in the adaptation of plants to adverse conditions and habitats; it is further believed that in the cell, they may exhibit a protective effect in response to biotic and abiotic stress. The aim of this study was to evaluate the effect of salt stress on the content of prenol lipids in the leaves of Crimean linden (Tilia ‘Euchlora’). The Cl content in the slightly damaged (“healthy”) leaves averaged 0.96%, while that in the heavily damaged (“sick”) leaves averaged 2.02%. The leaves of control trees contained on average 0.57% Cl. The Na contents in the healthy and damaged leaves were 208 mg/kg and 1038 mg/kg, respectively, and the Na content in the control areas was 63 mg/kg. A mixture of polyprenols consisting of four compounds, prenol-9, prenol-10, prenol-11 and prenol-12, was identified in the leaves of Crimean linden. This mixture was dominated by prenol-10 (2.16–6.90 mg/g). The polyprenol content was highest in the leaves of “healthy” trees (approximately 13.31 mg/g), was lower in the case of “sick” trees (approximately 9.18 mg/g), and was the lowest in the control trees (mean 4.71 mg/g). No changes were observed in the composition of the mixture of polyprenols under these conditions. The results suggest that polyprenols may affect the accumulation of Cl in leaves. This phenomenon is evidenced by the high content of prenols in the leaves of trees considered “healthy” but growing under conditions of increased soil salinity and the lower content of prenols in the leaves of the “sick” and control trees. It is advisable to further investigate the role of prenol lipids in the leaves of trees subjected to salt stress

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

72

Opis fizyczny

p.177-186,fig.,ref.

Twórcy

  • Botanical Garden-Center for Conservation of Biological Diversity, Polish Academy of Sciences, Prawdziwka St.2, 02-973, Warsaw, Poland
  • Botanical Garden-Center for Conservation of Biological Diversity, Polish Academy of Sciences, Prawdziwka St.2, 02-973, Warsaw, Poland
  • Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
autor
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106, Warsaw, Poland 
autor
  • Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
  • Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
  • Institute of Environmental Protection - National Research Institute, 5/11d Krucza St., 00-548 Warsaw, Poland
autor
  • Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106, Warsaw, Poland

Bibliografia

  • Alaoui-Sosse B., Sehmer L., Barnola P., Diezengremel P. 1998. Effect of NaCl salinity on growth and mineral partitioning in Quercus robur L., a rhythmically growing species. Trees 12: 424–430.
  • Allen S.E., Grimshaw H.N., Parkinson J.A., Quarmby C. 1974. Chemical Analysis of Ecological Materials. Blackwell Scientific Publications, Oxford.
  • Bach A., Pawłowska B. 2006. Effect of sodium chloride salinity and pH of soil on ornamental urban trees in Kraków with regard to nature conservation in cities. Ecological Chemistry and Engineering 13: 455–461.
  • Bajda A., Konopka-Postupolska D., Krzymowska M., Henning J., Skorupińska-Tudek K., Surmacz L., Wójcik J., Matysiak Z., Chojnacki T., Skorzynska-Polit E., Drazkiewicz M., Patrzylas P., Tomaszewska M., Kania M., Swist M., Danikiewicz W., Piotrowska W., Swiezewska E. 2009. Role of polyisoprenoids in tobacco resistance against biotic stresses. Physiologia Plantarum 135: 351–364. http://dx.doi.org/10.1111/j.1399-3054.2009.01204.x
  • Bajda A., Chojnacki T., Hertel J., Swiezewska E., Wójcik J., Kaczkowska A., Marczewski A., Bojarczuk T., Karolewski P., Oleksyn J. 2005. Light conditions alter accumulation of long chain polyprenols in leaves of trees and shrubs throughout the vegetation season. Acta Biochimica Polonica 52: 233–241.
  • Belgareh-Touze N., Corral-Debrinski M., Launhardt H., Galan J.-M., Munder T., Le Panse S, Haguenauer-Tsapis R. 2003. Yeast functional analysis: identyfication of two essential genes involved in ER to Golgi trafficking. Traffic 4: 607–617. http://dx.doi.org/10.1034/j.1600-0854.2003.00116.x
  • Bergamini E. 2003. Dolichol: an essential part in the antioxidant machinery of cell membranes. Biogerontology 4: 337–339. http://dx.doi.org/10.1023/B:BGEN.0000006637.48753.07
  • Breś W., Golcz A., Komosa A. 1997. Fertilization of Arboricultural Plants. Part 1 and 2, Agricultural Academy Publisher, Poznań, Poland.
  • Cekstere G., Nikodemus O., Osvalde A. 2008. Toxic impact of the de-icing material to street greenery in Riga, Lativa. Urban Forestry & Urban Greening 7: 207–217. http://dx.doi.org/10.1016/j.ufug.2008.02.004
  • Chmielewski W., Molski B., Supłat S. 1985. Index of green leaves areas as indicator of functional use of street trees in the city. In: Creation and protection of Verdure in the Urbanized landscape. (eds.). Supika I., VEDA, Bratislava, pp. 131–137.
  • Chojnacki T., Dallner G. 1988. The biological role of dolichol. Biochemical Journal 251: 1–9.
  • Ciepichał E., Jemiola-Rzeminska M., Hertel J., Swiezewska E., Strzalka K. 2011. Configuration of polyisoprenoids affects the permeability and thermotropic properties of phospholipid/polyisoprenoid model membranes. Chemistry and Physics of Lipids 164: 300–306. http://dx.doi.org/10.1016/j.chemphyslip.2011.03.004
  • Czerniawska-Kusza I., Kusza G., Dużyński M. 2004. Effect of deicing salts on urban soils and health status of roadside trees in the Opole region. Environtal Toxicology 19: 296–301. http://dx.doi.org/10.1002/tox.20037
  • Dajic Z. 2006. Salt stress. In: Physiology and molecular biology of stress tolerance in plants. (eds.). Madhava Rao K.V., Raghavendra A.S., Janardhan Reddy K., Springer, Dordrecht, pp. 41–99.
  • Davison A.W. 1971. The effects of de-icing salt on roadside verges. I. Soil and plant analyses. Journal of Applied of Ecology 8: 555–561. http://dx.doi.org/10.2307/2402891
  • Dmuchowski W., Badurek M. 2004. Chloride and sodium in the leaves of urban trees in Warsaw in connection to their health condition. Ecological Chemistry and Engineering 11: 297–303.
  • Dmuchowski W., Sołtykiewicz E., Woźniak J. 2007. The effect of urban environment on the phenological development of Tilia ‘Euchlora’ trees. Monograph Botanical Garden, pp. 141–145.
  • Dmuchowski W., Baczewska A.H., Brągoszewska P. 2011. Reaction of street trees on the condition in Warsaw. Ecological Questions 15: 97–105. http://dx.doi.org/10.2478/v10090-011-0041-4
  • Dmuchowski W., Brogowski Z., Baczewska A.H. 2011. Evaluation of vigour and health of street trees using the foliar ionic status. Polish Journal of Environmental Studies 20: 489–496.
  • Dmuchowski W., Baczewska A.H., Gozdowski D., Rutkowska B., Szulc W., Suwara I., Brągoszewska P. 2013. Effect of salt stress caused by deicing on the content of microelements in the leaves of linden. Journal of Elementology 1: 65–79.
  • Dmuchowski W., Baczewska A.H., Gozdowski D., Brągoszewska P. 2014. Effect of salt stress on the chemical composition of leaves of different trees species in urban environment. Fresenius Environmental Bulletin 22: 987–994.
  • Fay L., Shi X. 2012. Environmental Impacts of Chemicals for Snow and Ice Control: State of the Knowledge. Water, Air and Soil Pollution 223: 2751–2770. http://dx.doi.org/10.1007/s11270-011-1064-6
  • Flückiger W., Braun S. 1981. Perspectives of reducing the deleterious effects of de-icing salt upon vegetation. Plant and Soil 63: 527–529. http://dx.doi.org/10.1007/BF02370056
  • Franklin J.A., Zwiazek J.J. 2004. Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulfate. Physiologia Plantarum 120: 482–490. http://dx.doi.org/10.1111/j.0031-9317.2004.00246.x
  • Gałuszka A., Migaszewski Z.M., Podlaski R., Dołęgowska S., Michalik A. 2011. The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland. Environmental, Monitoring and Assessment 176: 451–464. http://dx.doi.org/10.1007/s10661-010-1596-z
  • Goździcka-Józefiak A., Woźny A. 2010. Reakcje komórek roślin na czynniki stresowe, tom II. Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza.
  • Green S.M., Machin R., Cresser M.S. 2008. Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils. Environmental Pollution 152: 20–31. http://dx.doi.org/10.1016/j.envpol.2007.06.005
  • Gutkowska M., Bienkowski T., Hung V.S., Wanke M., Hertel J., Danikiewicz W., Swiezewska E. 2004. Proteins are polyisoprenylated in Arabidopsis thaliana. Biochemical and Biophysical Research Communications 322: 998–1004. http://dx.doi.org/10.1016/j.bbrc.2004.08.025
  • Hanisch B., Kilz E. 1990. Monitoring of forest damage. Spruce and pine. Eugen Ulmer & Co, Stuttgart.
  • Hemming F.W. 1985. Glycosyl phosphopolyprenols. In: Glycolipids. (eds.). Wiegandt L., Amsterdam, The Netherlands: Elsevier Science Publishers BV, pp. 261–305.
  • Hjertman M., Wejde J., Dricu A., Carlberg M., Griffiths W.J., Sjovall J., Larsson O. 1997. Evidence for protein dolichylation. FEBS Letters 416: 235–238. http://dx.doi.org/10.1016/S0014-5793(97)01208-8
  • Janas T., Walinska K. 2000. The effect of hexadecaprenyl diphosphate on phospholipid membranes. Biochimica and Biophysica Acta 1464: 273–283. http://dx.doi.org/10.1016/S0005-2736(00)00154-1
  • Jimenez-Casas, M., Zwiazek, J. J. 2014. Adventitious sprouting of Pinus leiophylla in response to salt stress. Annals of Forest Science, 1–9.
  • Jóźwiak A., Brzozowski R., Bujnowski Z., Chojnacki T., Swiezewska E. 2013. Application of supercritical CO2 for extraction of polyisoprenoid alcohols and their esters from plant tissues. Journal of Lipid Research 54: 2023–2028. http://dx.doi.org/10.1194/jlr.D038794
  • Kayama M., Quoreshi A.M., Kitaoka S., Kitahashi Y., Sakamoto Y., Maruyama Y., Kitao M., Koike T. 2003. Effects of deicing salt on the vitality and health of two spruce species, Picea abies Karst., and Picea glehnii Masters planted along roadsides in northern Japan. Environmental Pollution 124: 127–137. http://dx.doi.org/10.1016/S0269-7491(02)00415-3
  • LaCroix R.L., Keeney D.R., Walsh L.M. 1970. Potentiometric titration of chloride in plant tissue extracts using the chloride ion electrode. Communications in Soil Science and Plant Analysis 1: 1–6. http://dx.doi.org/10.1080/00103627009366233
  • Larcher W. 2005. Physiological plant ecology, 4th edition, ecophysiology and stress physiology of functional groups, Berlin, Springer.
  • Lax S., Peterson E.W. 2009. Characterization of chloride transport in the unsaturated zone near salted road. Environmental Geology 58: 1041–1049. http://dx.doi.org/10.1007/s00254-008-1584-6
  • Loreto F., Velikova V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology 127: 1791–1787. http://dx.doi.org/10.1104/pp.010497
  • Marosz A. 2011. Soil pH, electrical conductivity values and roadside leaf sodium concentration at three sites in central Poland. Dendrobiology 66: 49–54.
  • Marosz A., Nowak J.S. 2008. Effect of salinity stress on growth and macroelements uptake of four tree species. Dendrobiology 59: 23–29.
  • Marschner P. 1995. Marschner’s Mineral Nutrition of Higher Plants, second ed. Academic Press, New York.
  • Migaszewski Z.M., Gałuszka A., Pasławski P. 2004. Baseline element concentrations in soils and plant bioindicators of selected national parks of Poland. Geological Quarterly 48: 383–394.
  • Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell Environmental 25: 239–250. http://dx.doi.org/10.1046/j.0016-8025.2001.00808.x
  • Oleksyn J., Kloeppel B.D., Łukasiewicz Sz., Karolewski P., Reich P.B. 2007. Ecophysiology of horse chestnut (Aesculus hippocastanum L.) in degraded and restored urban sites. Polish Journal of Ecology 55: 245–260.
  • Pauleit S., Jones N., Garcia-Martin G., Garcia-Valdecantos J.L., Rivière L.M., Vidal-Beaudet L., Bodson M., Randrup T.B. 2002. Tree establishment practice in towns and cities – results from a European survey. Urban Forestry and Urban Greening 5: 83–96. http://dx.doi.org/10.1078/1618-8667-00009
  • Pauleit S. 1988. Vitalitätskartierung von Stadtbäume in Mŭnchen. Garten + Landschraft 7: 38–40.
  • Pedersen L.B., Randrup T.B., Ingerslev B. 2000. Effects of road distance and protective measures on deicing NaCl deposition and soil solution chemistry in planted median strips. Journal of Arboriculture 26: 238–245.
  • Perkin-Elmer. 1990. Analytical methods for atomic absorption spectrophotometry. Bodenseewerk.
  • Ranjan R., Marczewska A., Chojnacki T., Hertel J., Swiezewska E. 2001. Search for polyprenols in leaves of evergreen and deciduous Ericaceae plants. Acta Biochimica Polonica 48: 579–584.
  • Roślińska M., Walińska K., Swiezewska E., Chojnacki T. 2002. Plant long-chain polyprenols as chemotaxonomic markers. Dendrobiology 47: 41–50.
  • Sato M., Sato K., Nishikawa S., Hirata A., Kato J., Nakano A. 1999. The yeast RER2 gene, identified by endoplasmic retikulum protein localizations, encodes cis-prenyltransferaze, a key enzyme in dolichol synthesis. Molecular Cell Biology 19: 471–483.
  • Sehmer L., Alaoui-Sosse B., Dizengremel P. 1995. Effect of salt stress on growth and on the detoxifying pathway of pendunculate oak Seedlings (Quercus robur L.). Jouranl of Plant Physiology 147: 144–151. http://dx.doi.org/10.1016/S0176-1617(11)81427-6
  • Shortle W.C., Rich A.E. 1970. Relative sodium chloride tolerance of common roadside trees in southeastern New Hampshire. Plant Disease Management Reports 54: 360–362.
  • Skelly J.M., Davis D.D., Merril W., Cameron E.A. Brown H.D., Drummond D.B., Dochinger L.S. 1990. Diagnosing injury to eastern forest trees. PennState College of Agriculture, Pennsylvania State University.
  • Skorupińska-Tudek K.J., Sternik J., Bajda A., Klobus G., Swiezewska E. 2009. Changes in polyisoprenoid alcohols accumulation upon abiotic stress in plants. Presentation: Poster at Zjazd Polskiego Towarzystwa Biochemicznego.
  • Skorupińska-Tudek K., Wojcik J., Swiezewska E. 2008. Polyisoprenoid alcohols – recent results of structural studies. The Chemical Record 8: 33–45. http://dx.doi.org/10.1002/tcr.20137
  • Sokal R.R., Rohlf F.J. 1995. Biometry: the principles and practice of statistics in biological research. W.H. Freeman and company, New York.
  • Stone K.J., Wellburn A.R., Hemming F.W., Pennock J.F. 1967. The characterization of ficaprenol-10-11 and 12 from the leaves of Ficus elastica (decorative rubber plant). Journal of Biochemistry 102: 325–330.
  • Surmacz L., Swiezewska E. 2011. Polyisoprenoids – secondary metabolites or physiologically important superlipids? Biochemical and Biophysical Research Communications 407: 627–632. http://dx.doi.org/10.1016/j.bbrc.2011.03.059
  • Surmacz L., Swiezewska E. 2013. Isoprenoid Synthesis in Plants and Microorganisms: New Concepts and Experimental Approaches, Bach T.J., and Rohmer M. (eds.). Springer Science + Business Media New York, ss. 307–313.
  • Świeżewska E., Chojnacki T. 1988. Long-chain polyprenols in gymnosperm plants. Acta Biochimica Polonica 35: 131–147.
  • Świeżewska E., Danikiewicz W. 2005. Polyisoprenoids: Structure, biosynthesis and function. Progress in Lipid Research 44: 235–258. http://dx.doi.org/10.1016/j.plipres.2005.05.002
  • Świeżewska E., Sasak W., Mankowski T., Jankowski W., Vogtman T., Krajewska I., Hertel J., Skoczylas E., Chojnacki T. 1994. The search for plant polyprenols. Acta Biochimica Polonica 41: 221–260.
  • Świeżewska E., Thelin A., Dallner G., Andersson B., Ernster L. 1993. Occurrence of prenylated proteins in plant cells. Biochemical and Biophysical Research Communications 192: 161–166. http://dx.doi.org/10.1006/bbrc.1993.1395
  • Thelin A., Low P., Chojnacki T., Dallner G. 1995. Covalent binding of dolichyl phosphate to proteins in rat liver. European Journal of Biochemistry 195: 755–761. http://dx.doi.org/10.1111/j.1432-1033.1991.tb15763.x
  • Upchurch R.G. 2008. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters 30: 967–977. http://dx.doi.org/10.1007/s10529-008-9639-z
  • Valtersson C., Van Duijn G., Verkleij A.J., Chojnacki T., De Kruijff B., Dallner G. 1985. The influence of dolichol, dolichol esters, and dolichyl phosphate on phospholipid polymorphism and fluidity in model membranes. Journal of Biological Chemistry 260: 2742–2751.
  • Vollenweider P., Gŭnthardt-Goerg M.S. 2005. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environmental Pollution 137: 455–465. http://dx.doi.org/10.1016/j.envpol.2005.01.032
  • Wanke M., Dallner G., Swiezewska E. 2000. Subcellular localization of plastoquinone and ubiquinone synthesis in spinach cells. Biochimica et Biophysica Acta 1463: 188–194. http://dx.doi.org/10.1016/S0005-2736(99)00191-1
  • Ziska H.L., DeJong T.M., Hoffman G.F., Mead R.M. 1991. Sodium and chloride distribution in salt-stressed Prunus salicina, a deciduous tree species. Tree Physiology 8: 47–57. http://dx.doi.org/10.1093/treephys/8.1.47

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5d9b3fc3-6476-420a-8782-fdb0e3ba468c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.