PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 21 | 3 |

Tytuł artykułu

Assessment of the content of magnesium, potassium, phosphorus and calcium in water and algae from the Black Sea in selected bays near Sevastopol

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The content of macroelements such as magnesium, calcium or phosphorus in tissues of aquatic organisms is often used as an indicator of the quality of an aquatic environment. The aim of this paper was to assess the content of magnesium, potassium, calcium and phosphorus in water and in algae in selected bays of the Black Sea near Sevastopol. The samples of water and algae were collected in August 2012 from eight bays of Sevastopol (Gałubaja, Kozacha, Kamyshova, Strieletska, Kruhla, Pishchana, Pivdenna, Sevastopol Bay). One sample was obtained from the open sea near Fiolent. Cystoseira barbata and Ulva rigida algae were collected from the same sites. The collected water was conserved in situ and, after being brought to a laboratory, it underwent determinations of the content of magnesium, potassium, phosphorus and calcium. Laboratory samples of the algae were subjected to mineralization in a closed system with the use of microwave energy. The content of the elements in water and in digested algae samples was determined using the ICP-OES method. The magnesium content in water ranged between 461.6 and 638.9 mg Mg ∙ dm-3, potassium between 332.8 and 457.6 mg K ∙ dm-3, phosphorus 0.072-0.143 mg P ∙ dm-3, and the calcium content was within the range from 209.5 to 288.6 mg Ca ∙ dm-3. A higher content of calcium and phosphorus was found in Cystoseira barbata, whereas a higher level of magnesium was detected in Ulva rigida algae. No statistically significant correlation between the content of the elements in water and in algae was observed. The content of the elements in water decreased in the order Mg>K>Ca>P, whereas in algae the order was K>Ca>Mg>P. Despite the differences in amounts of the accumulated elements in algae, there was a significant relation between the content of individual elements in Cystoseira barbata and Ulva rigida, which suggests that both species of algae are suitable for biomonitoring.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

3

Opis fizyczny

p.915-926,fig.,ref.

Twórcy

  • Institute of Agricultural Engineering and Informatics, University of Agriculture in Krakow, Krakow, Poland
autor
  • Chair of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Krakow, Poland
autor
  • Institute of Agricultural Engineering and Informatics, University of Agriculture in Krakow, Balicka 116b, Krakow, Poland

Bibliografia

  • Aguilera-Morales M., Casas-Valdez M., Carrillo-Domínguez S., González-Acosta B. Pérez-gil F. 2005. Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source. J. Food Compos. Anal., 18(1): 79-88. DOI: 10.1016/j. jfca.2003.12.012
  • Besada V., Andrade J.M., Schultze F., González J.J. 2009. Heavy metals in edible seaweeds commercialised for human consumption. J. Marine Syst., 75(1-2): 305-313. DOI: 10.1016/j. jmarsys.2008.10.010
  • Black Sea synergy – a new regional cooperation initiative. Commision of the European Communities, Brussels. 11-04-2007 Com (2007), 160 pp. 13. http://www.enpi-info.eu/library/ content/black-sea-synergy-%E2%80%93-new-regional-cooperation-initiative
  • Brito G.B. DeSouza T.L., Bressy F.C., Moura C.W.N., Korn M.G.A. 2012. Levels and spatial distribution of trace elements in macroalgae species from the Todosos Santos Bay, Bahia, Brazil. Mar. Pollut. Bull., 64(10): 2238-2244. DOI: 10.1016/j.marpolbul.2012.06.022
  • Carpaneto A., Naso A., Paganetto A., Cornara L., Pesce E.-R., Gambale F. 2004. Properties of ion channels in the protoplasts of the Mediterranean seagrass Posidonia oceanic. Plant Cell. Environ., 27: 279-292. DOI: 10.1111/j.1365-3040.2003.01139.x/full
  • ÇetingülV., Aysel V., Kurumlu-Kuran Y. 1997. Biochemical studies on Scytosiphonsim licissimus (Clemente) Cremades (Phaeophytas cytosiphonales).Turk. J. Mar. Sci., 3: 33-40.
  • Chakraborty S., Bhattacharya T., Singh G., Maity J.P. 2014. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: A biomonitoring approach for pollution assessment. Ecotox. Environ. Safe., 100: 61-68. DOI: 10.1016/j.ecoenv.2013.12.003
  • Culkin F., Cox R.A. 1966. Sodium, potassium, magnesium, calcium and strontium in seawater. Deep-Sea Res., 13: 789-804.
  • Horta-Puga G., Cházaro-Olvera S., Winfield I., Avila-Romero M., Moreno-Ramírez M. 2013. Cadmium, copper and lead in macroalgae from the Veracruz Reef System, Gulf of Mexico: Spatial distribution and rainy season variability. Mar. Pollut. Bull., 68(1-2): 127-133. DOI: 10.1016/j.marpolbul.2012.12.008
  • Kravtsova A. Milchakova N., Frontasyeva M. 2014. Elemental accumulation in the Black Sea brown algae Cystoseira studied by neutron activation analysis. Ecol. Chem. Eng. S., 21(1): 9-23. DOI: 10.2478/eces-2014-0001
  • Kravtsova A.V, Milchakova N.A., Frontasyeva m.V. 2015. Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from marine protected areas of Crimea (Black Sea). Mar. Pollut. Bull., Available online 13 March 2015 In Press, Corrected Proof. DOI: 10.1016/j.marpolbul.2015.02.040
  • Kuzminova N., Dorokova I., Rudneva I. 2014. Age-Dependent Changes of Mediterranean Trachurus mediterraneus Male and Female from Coastal Waters of Sevastopol (Black Sea, Ukraine). Turk. J. Fish Aquat. Sci., 14: 183-192. DOI: 10.4194/1303-2712-v14_1_20
  • Langmead O., Mcq uatters-Gollop A., Mee L.D., Friedrich J., Gilbert A.J., Gomoiu M-T., Jackson E.L., Knudsen S., Minicheva G., Todorova V. 2009. Recovery or decline of the northwestern Black Sea: A societal choice revealed by socio-ecological modeling. Ecol. Model., 220(21): 2927-2939. DOI: 10.1016/j.ecolmodel.2008.09.011
  • Latique S., Chernane H., Mansori M., El Kaoua M. 2013. Seaweed liquid fertilizer effect on physiological and biochemical parameters of bean plant (Phaesolus vulgaris var. Paulista) under hydroponic system. Eur. Sci. J., 9(30): 174-191
  • Luo M.B., Liu F. 2011. Salinity-induced oxidative stress and regulation of antioxidant defense system in the marine macroalga Ulvae prolifera. J. Exp. Mar. Biol. Ecol., 409(1-2): 223-228. DOI: 10.1016/j.jembe.2 011.08.023
  • Malea P., Haritonidis S. 2000. Use of the green alga Ulva rigida C. Agardh as an indicator species to reassess metal pollution in the Thermaikos Gulf, Greece, after 13 years. J. Appl. Phycol., 12(2): 169-176. DOI: 10.1023/A:1008136320459
  • Mamboya F., Lyimo T.J., Landberg T., Björk M. 2009. Influence of combined changes in salinity and copper modulation on growth and copper uptake in the tropical green macroalga Ulvae reticulate. Estuar. Coast. Shelf S., 84(3): 326-330. DOI: 10.1016/j.ecss.2009.03.034
  • Naser H.A. 2013. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: A review. Mar. Pollut. Bull., 72(1): 6-13. DOI: 10.1016/j.marpolbul. 2013.04.030
  • Ostapczuk P., Burow M., May K., Mohl C., Froning M., Süssenbach B., Waidmann E., Emons H. 1997. Mussels and algae as bioindicators for long-term tendencies of element pollution in marine ecosystems. Chemosphere, 34(9-10): 2049-2058. DOI: 10.1016/S0045-6535(97)00067-2
  • Paul J., Sheeba M. 2014. Atomic absorption spectroscopic determination and comparison of some mineral elements in Ulva rigida C. AG. from Hare island, Thoothukudi Tamil Nadu, India. World J. Pharm. Res.., 3(4): 785-795. DOI: isindexing.com/isi/papers/1416561952.pdf
  • Qiu Y-W. 2015. Bioaccumulation of heavy metals both in wild and mariculture food chains in Daya Bay, South China. Estuar. Coast. Shelf. S., 163B(20): 7-14. DOI: 10.1016/j.ecss.2015.05.036
  • Rodríguez-Figueroa G.M., Shumilin E., Sánchez-Rodríguez I. 2009. Heavy metal pollution monitoring using the brown seaweed Padina durvillaei in the coastal zone of the Santa Rosalía mining region. Baja California Peninsula Mexico. J. Appl. Phycol., 21: 19-26. DOI: 10.1007/ s/10811-008-9346-0
  • Rudnick D.T., Ortner P.B., Browder J.A., Davis S.M. A. 2005. Conceptual ecological model of Florida Bay. Wetlands, 25(4): 870-883. DOI: 10.1672/0277-5212(2005)025[0870:ACEMOF] 2.0.CO;2
  • Rupére P. 2002. Mineral content of edible marine seaweeds. Food Chem., 79: 23-26. DOI: 10.1016/S0308-8146(02)00171-1
  • Sánchez-Rodríguez I., Huerta-Diaz M.A., Choumiline E., Holguín-Quiñones O., Zertuche-
  • González J.A. 2001. Elemental concentrations in different species of seaweeds from
  • Loreto Bay, Baja California Sur, Mexico: implications for the geochemical control of metals in algal tissue. Environ. Pollut., 114(2): 145-160. DOI: 10.1016/S0269-7491(00)00223-2
  • Touchette B.W. 2007. Seagrass-salinity interactions: Physiological mechanisms used by submersed marine angiosperms for a life at sea. J. Exp. Mar. Biol. Ecol., 350(1-2): 194-215. DOI: 10.1016/j.jembe.2007.05.037
  • Yamashita M., Tomita-Yokotani K., Hashimoto H., Sawaki N., Notoya M. 2009. Sodium and potassium uptake of Ulva – Application of marine macro-algae for space agriculture. Adv. Space Res., 43(8): 1220-122. DOI: 10.1016/j.asr.2009.02.004
  • Yamashita M, Tomita-Yokotani K., Hashimoto H., Sawaki N., Notoya M. 2009. Sodium and potassium uptake of Ulva – Application of marine macro-algae for space agriculture. Adv. Space Res., 43(8): 1220-122. DOI: 10.1016/j.asr.2009.02.004
  • Żbikowski R., Szefer P., Latała A. 2007. Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the southern Baltic. Sci. Total Environ., 387(1-3): 320-332. DOI: 10.1016/j.scitotenv.2007.07.017

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5d8a2f75-468c-46fa-85d5-8aa876999ae4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.