PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 06 |

Tytuł artykułu

Pre-breeding: the role of antioxidant enzymes on maize in salt stress tolerance

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Maize is a crop that is moderately sensitive to salt stress. Salinization of soil is a severe threat to maize production worldwide. Understanding the response and tolerance mechanism of maize to salt stress may be conducive to formulate strategies to improve maize performance under saline environments. In this study, salt-tolerant, salt-sensitive and moderate salt-tolerant maize plants were investigated, respectively, under salt stress conditions in three aspects: growth status, enzyme activity and gene expression level. After 30 days of planting and salt stress treatment, the plant height of USTB-297 (salt-tolerant maize) was 49.40% higher than that of USTB-265 (salt-sensitive maize) and 25.10% higher than that of USTB-109 (moderate salt-tolerant maize). Analysis of antioxidant enzymes superoxide dismutase (EC1.15.1.1), ascorbate peroxidase (EC1.11.1.11) and catalase (EC1.11.1.6) revealed that there are distinctions between these different breeds. Salt-tolerant breed with a higher plant height also had higher antioxidant enzyme activity and related genes expression compared to salt-sensitive or moderate salt-tolerant breed. The detection of gene expression in superoxide dismutase, catalase and ascorbate peroxidase using real-time PCR and the data of enzyme activity indicate that we can build a method of breeding for maize.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

06

Opis fizyczny

Article 102 [7p.], fig.,ref.

Twórcy

autor
  • Department of Biological Technology, Institute of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing 100083, China
autor
  • Department of Biological Technology, Institute of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing 100083, China
autor
  • Department of Biological Technology, Institute of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing 100083, China
autor
  • Department of Biological Technology, Institute of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing 100083, China
autor
  • Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
autor
  • Department of Biological Technology, Institute of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing 100083, China

Bibliografia

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399
  • Beers, Sizer RF (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140
  • Chinnusamy V, Zhu JK (2003) Plant salt tolerance. Top Curr Genet 4:241–270
  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448
  • Di H, Yu T, Deng Y, Dong X, Li R, Zhou Y, Wang ZH (2017) Complementary dna (cdna) cloning and functional verification of resistance to head smut disease (Sphacelotheca reiliana) of an nbs–lrr gene zmnl in maize (Zea mays). Euphytica 213(12):288
  • Fraga D, Meulia T, Fenster S (2008) Real-time PCR. Wiley, Hoboken, pp 10.3.1–10.3.34
  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases. I. Occurrence in higher plants. Plant Physiol. 59:309–314
  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684
  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51(51):463–499
  • Heffner EF, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690
  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Bioph Res Co. 495:286–291
  • Mckersie BD, Leshem YY (1994) Stress and stress coping in cultivated plants. Springer, Dordrecht, pp 194–217
  • Miller G, Suzuki N, Ciftci-yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33:453–467
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Muhammad F, Mubshar H, Abdul W, Kadambot H (2015) Salt stress in maize: effect, resistance mechanisms, and management. A review. Agron Sustain Dev 35:461–481
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Neto ADDA, Prisco JT, Enéas-Filho J, Abreu CEBD, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56(1):87–94
  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279
  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542
  • Scandalios JG (2002) The rise of ROS. Trends Biochem Sci 27:483–486
  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) e differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418
  • Wahid A, Perveen M, Gelani S, Basra SMA (2007) Pretreatment of seed with H₂O₂ improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294
  • Xiang PK, Pan JW, Zhang MY, Xin X, Yan Z, Yang L, Li DP, Li DQ (2011) ZmMKK4, a novel group C mitogen-activated protein kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant, Cell Environ 34:1291–1303
  • Xu FJ, Jin CH, Liu WJ, Zhang YS, Lin XY (2011) Pretreatment with H₂O₂ alleviates aluminum-induced oxidative stress in wheat seedlings. J Integr Plant Biol 53:44–53
  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685
  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5c74b457-2561-4d14-888f-ce75134b1a4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.