# КАЧЕСТВО ПРИГОТОВЛЕНИЯ И ЭФФЕКТИВНОСТЬ ИСПОЛЬЗЛВАНИЯ КОНЦЕНТРИРОВАННЫХ И КОМБИНИРОВАННЫИХ КОРМОВ

## Иван Ревенко, Юлий Ревенко

Национальный университет биоресурсов и природопользования Украины Украина, г. Киев, ул. Героев Обороны, 15

Ivan Revenko, Yuliy Revenko

National University of Life and Environmental Sciences of Ukraine Heroiv Oborony Str. 15, Kiev, Ukraine

**Аннотация.** Обоснованы способ и техническое решение, которые обеспечивают существенное повышение качества (равномерность фракционного состава) приготовления концентрированных и комбинорованных кормов.

**Ключевые слова:** корма, качество приготовления, фракционный состав, равномерность, классификация, эффективность использования.

#### ПОСТАНОВКА ПРОБЛЕМЫ

Исследованиями в области кормления доказано, что быстрого роста продуктивности сельскохозяйственных животных при рациональном расходовании кормовых ресурсов можно добиться только в случае создания оптимальных условий для течения обменных процессов в организмах животных и обеспечения их полноценным питанием. При этом основными факторами последнего являются [1]: полный набор незаменимых питательных веществ, своевременное о оптимально согласованное в количественном и качественном отношениях поступление этих веществ в организм животного.

В этой связи весьма важно обеспечивать высокое качество подготовки кормов к скармливанию. Известно, в частности [2], что средние потери кормов и их питательной ценности, несовершенством способов хранения и подготовки кормового сырья к скармливанию и неудовлетворительное их качество, часто превышают 20-30 %. Потому усовершенствование процессов приготовления кормов с целью повышения их качества равноценно по технологической эффективности экономии кормового сырья или же увеличению кормовых ресурсов.

# АНАЛИЗ РЕЗУЛЬТАТОВ ПРЕДЫДУЩИХ ИССЛЕДОВАНИЙ

В отношении подготовки кормов к скармливанию практически возможны два похода [3, 4]. Первый – когда та или иная обработка обязательна для обеспечения самой возможности использования некоторых видов кормового сырья как корма, чем достигается расширение кормовых ресурсов. Второй – когда соответствующая подготовка целесообразна в технологическом та экономическом отношениях, поскольку содействует более рациональному и эффективному использованию кормовых ресурсов и, таким образом, позволяет увеличить производство продукции животноводства.

Длительная практика и широкие научные исследования свидетельствуют, с наибольшей эффективностью кормовые ресурсы можно использовать только в переработанном виде в составе сбалансированных смесей. При этом переработка кормов в 3-4 раза дешевле стоимости дополнительно полученной за счет этого продукции животноводства [5, 6].

Если учесть перспективные масштабы развития отрасли и тот факт, что в современном производстве продукции животноводства доля затрат, повязанных с кормами, в общем балансе себестоимости этой продукции превышает 40-45 %, а на предприятиях промышленного типа достигает 70-80 % (например, птицеводство, свиноводство), то оба указанные подхода - расширение возможных кормовых ресурсов и повышение технологической эффективности их использования - есть весьма важными, а сами процессы обработки кормов при подготовке их к скармливанию приобретают проблемное значение

Эффективность любого способа обработки кормового сырья определяется прежде количеством продукции, которую можно получить в результате скармливания единицы корма (окупаемость кормов) или же рас ходом кормов на единицу произведенной продукции. В случае положительного решения о целесообразности подготовки кормов к скармливанию возникает вопрос относительно обоснования качественных показателей процессов и продуктов кормоприготовления. Вопрос эффективности использования кормов можно рассмотреть на примере процесса их измельчения, которое является одним из обязательных и наиболее распространенных технологических приемов подготовки кормового сырья к скармливанию. В этом отношении накоплено достаточно данных научных исследований и производственного опыта, которые позволяют оценить эффективность кормоприготовления.

В каждом конкретном случае уровень технологической эффективности кормоприготовления за тем или иным критерием оценки (например, выход продукции, окупаемость кормов) в зависимости от вида и возраста животных, типа кормления и других возможных факторов, будет неодинаковым. Поэтому значительно удобнее пользоваться относительной оценкой влияния качества кормоприготовления на технологическую эффективность использования кормов.

На основании анализа, обобщения и математической обработки литературных данных [7-22] построены графики (рис. 1), которые отображают характер влияния размера частиц концентрированных и комбинированных кормов при откорме свиней на суточные привесы живой массы, расходование кормов на единицу привела, а также продолжительность от корма. При этом за единицу принято соответствующие показатели при скармливании целого (не измельченного) ячменю.

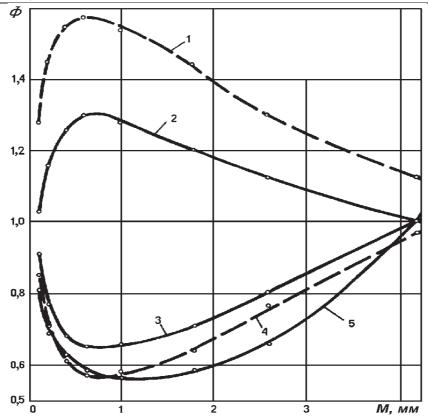
Приведенные зависимости можно аппроксимировать уравнением [5, 6]:

$$\Phi = aM^e e^{cM}, \tag{1}$$

где:  $\Phi$  – оцениваемый показатель (например, величина привеса живой массы, окупаемость кормов и др.), определяемый в абсолютных или относительных единицах; M – средний

размер кормовых частиц (модуль помола), мм; e – основа натурального логарифма; a, e, c – постоянные.

Наведенные зависимости имеют экстремальный характер и отражают наличие оптимального размера кормовых частиц. Таким образом, максимального технологического эффекта в виде дополнительного производства продукции животноводства можно достичь только в том случае, если будет обеспечен оптимальный размер кормовых частиц. Последний определяется научно обоснованными зоотехническими рекомендациями и зависит от биологического вида и возраста животных или птицы, а также от вида кормового сырья и способа использования кормов (раздельное скармливание или в составе смесей, рассыпных или в уплотненном виде).


Между тем практический подход к оценке измельченных кормов по средневзвешенной крупности частиц (модуль помола M) не дает достаточно полной информации относительно совершенства процесса и качества продуктов измельчения, в частности, не характеризирует их гранулометрический состав и равномерность.

## ЦЕЛЬ РОБОТЫ

Цель данной роботы – обосновать эффективные направления использования концентрированных и комбинированных кормов путем повышения равномерности их гранулометрического состава при подготовке к скармливанию.

## РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Для анализа качества измельчения кормов, уровня соответствия их фракционного состава действующим зоотехническим рекомендациям рассмотрим размерные характеристики продуктов измельчения концентрированных и грубых кормов (рис. 2), полученных в результате их переработки современными машинами (на примере молоткових дробилок, которые чаще всего используют с этой целью в сельском хозяйстве и комбикормовой промышленности).



**Рис. 1.** Относительная эффективность использования кормов при откорме свиней в зависимости от размера частиц комбикормов (-----) и зерна ячменя (- - - -):

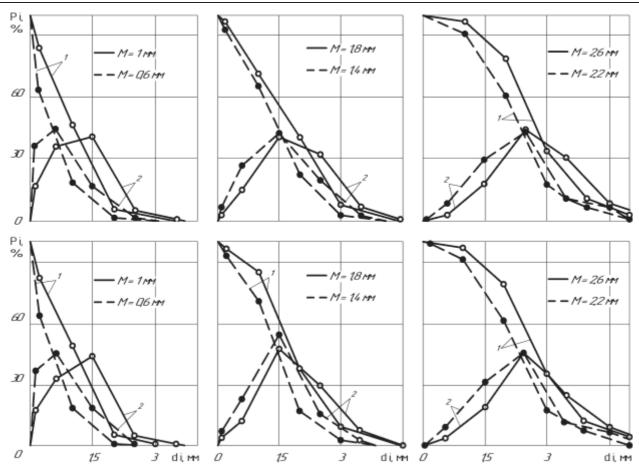
1 и 2 – суточный привес живой массы; 3 и 4 расход кормов на единицу привеса; 5 – продолжительность откорма

**Fig. 1.** Relative efficiency of feed utilization in fattening pigs, depending on size of particle feed (-----) and barley (----):

1 and 2 - the daily live weight gain, 3 and 4 feed consumption per unit of weight gain, 5 - duration of fattening

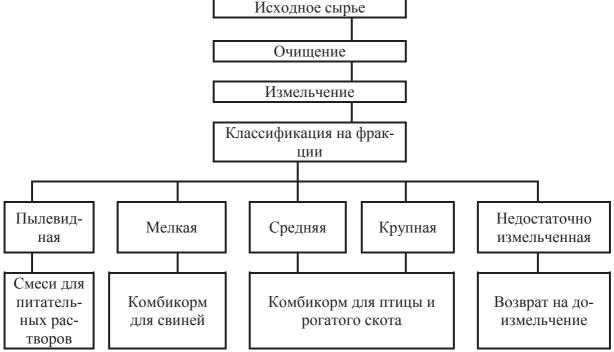
Оценить качество исполнения машиной или оборудованием той или иной технологической операции — это значит определить степень соответствия действительных показателей нормативным [24] или научно обоснованным.

По значениям показателя *М* продукты измельчения, которые рассматриваются на рис. 2, соответствуют стандартным ступеням помола (мелкий, средний и грубый). Однако гранулометрический их состав весьма неравномерный: коэффициент вариации фракционного состава находится в пределах 60-90 %; выход фракции рационального размера не превышает 35-40 %, а в отдельных случаях снижается даже до 10-15 %.


Между тем известно [6], что любые отклонения размера кормовых частиц от среднего (подчеркнем - оптимального) значения сопровождаются технологическими потерями, величина которых пропорциональна второй степени среднеквадратичного отклонения  $\sigma^2$  этого параметра. Для приведенных выше зависимостей (1), размер технологических потерь будет составлять:

$$\Delta \Phi = \varepsilon M^{\theta} e^{cM} \left( 1 + \frac{9}{M} - \frac{\mu}{M^2} \right) \sigma_M^2,$$

$$1 \qquad 2 \qquad 6 \qquad \theta(\theta - 1)$$


где: 
$$\varepsilon = \frac{1}{2}ac^2$$
;  $\theta = \frac{2e}{c}$ ;  $\mu = \frac{e(e-1)}{c^2}$ .

Результаты расчетов с учетом данных об эффективности использования кормов, приведенных на рис. 1, свидетельствуют, что в случае качественного измельчения кормов можно ожидать увеличения привесов массы свиней при откорме концентрированными та комбинированными кормами на 36-41 %, уменьшения расхода кормов на единицу продукции — 37-44 %, сокращения сроку откорма — приблизительно на 45 %.



**Рис. 2.** Размерные характеристики продуктов измельчения зерна ячменя (- - - -) и сена клевера (-----): 1 – суммарные; 2 – распределение частиц по фракциям **Fig. 2.** Dimensional characteristics of barley grain milling products (- - - -) and hay cell faith

**Fig. 2.** Dimensional characteristics of barley grain milling products (- - - -) and hay cell faith (-----): 1 - total, 2 - distribution of particle fractions



**Рис. 3.** Рациональная технологическая схема приготовления комбинированных кормов **Fig. 3.** Rational flowsheet preparation of mixed feeds

# КАЧЕСТВО ПРИГОТОВЛЕНИЯ И ЭФФЕКТИВНОСТЬ ИСПОЛЬЗЛВАНИЯ КОНЦЕНТРИРОВАННЫХ И КОМБИНИРОВАННЫИХ КОРМОВ

В тому числе только за счет обеспечения равномерного фракционного состава продуктов измельчения при оптимальном размере кормовых частиц в пределах 0,5-1 мм можно повысить привесы и окупаемость кормов на 8-12 %, а срок откорма сократить на 6-9 % в сравнении с использованиям кормов, переработанных современными молот-ковыми дробилками.

В связи с изложенными положениями возникает вопрос относительно практической реализации предпосылок о возможностях повышения эффективности использования кормов.

У комбикормовой промышленности и в сельскохозяйственных предприятиях приготовление комбикормов осуществляется по такой технологической схеме [25]: очищение исходных компонентов — их измельчение — дозирование — смешивание.

При измельчении ингредиентов комбикормов зоотехническими требованиями рекомендуется такой размер частиц продукта: для свиней — в пределах мелкого помела (средняя размер 0,2-1,0 мм), а для птицы и рогатого скота — среднего (1,0-1,8 мм) та крупного (1,8-2,6 мм). Коэффициент вариации их фракционного состава в соответствии с действующими требованиями не должен превышать 45-65 % [26]. В связи с отмеченными положениями следует, что известные способы приготовления и использования комбикормов не достаточно эффективны.

С целью повышения эффективности использования комбикормов путем обеспечения равномерного фракционного состава ингредиентов предлагаем [27] технологическую схему их приготовления (рис. 3). Исходные компоненты вначале очищают от посторонних включений и измельчают. Потом продукты измельчения классифицируют на фракции: до 0.2 мм – пылевидную, 0.2-1.0мм – мелкую, 1,0-1,8 мм – среднюю, 1,8-2,6 мм – крупную и более 2,6 мм – недостаточно измельченную. Каждую из размерных фракций используют по специальному назначению: пылевидную - для получения смесей для приготовления питательных растворов молодняку животных; мелкую - на комбикорма для свиней; среднюю - на комбикорма для молодняка птицы и рогатого скота; крупную - для производства комбикормов взрослому поголовью птицы и рогатого скота; а недостаточно измельченную – возвращают на повторное измельчение.

Предлагаемый способ приготовления комбикормов целесообразно использовать в специализированных цехах, а также на предприятиях комбикормовой промышленности с широкой номенклатурой производства комбикормов. При этом классификация продуктов измельчения за размером частиц ингредиентов позволит до возможного минимума (5-10 %) уменьшить коэффициент вариации (неравномерность) их фракционного состава и этим самым повысить качество и эффективность использования комбикормов. Поскольку снижение коэффициента вариации фракционного состава при измельчении ингредиентов комбикормов на каждые 10 % равноценно по технологической эффективности дополнительному производству или же экономии 1-3 % кормов [6]., то общая технологическая эффективность при скармливании полученных таким образом комбикормов будет равноценна их экономии или дополнительному производству в размере не менее 4-6 % и может достигать 12-15 %.

В условиях рыночной экономики каждый производственник продукции стремится увеличить прибыль, наиболее экономно использовать все имеющиеся ресурсы и достичь наивысшей рентабельности [28]. Следует подчеркнуть, что методологически весьма важно различать экономию достигнутую в результате повышения технологической эффективности использования кормов, обычной экономии при снижении, например, капиталовложений, затрат труда или энергии, расходования кормов. При промышленном подходе к производству продукции животноводства преобладает именно технологический эффект, поскольку он обеспечивает больший выход продукции при тех же запасах кормовых ресурсов и площадях земельных угодий, занятых под кормовые культуры.

#### ВЫВОДЫ

В процессе кормоприготовления одним из резервов повышения эффективности использования кормовых ресурсов есть выравнивание фракционного состава продукта при измельчении ингредиентов. Этого можно достичь, например, путем классификации продуктов измельчения кормового сырья и це-

ленаправленного использования каждой из размерных фракций.

#### ЛИТЕРАТУРА

- 1. Dmitrochenko A.P., Pshenichnyy P.D. 1975: Kormleniye selskokhozyaystvennykh zhivotnykh. L.: Kolos. 480.
- 2. Lesik B.V., Trisvyatskiy L.O., Snezhko V.A. 1980: Zberigannya i tekhnologiya silskogospodarskikh produktiv. K.: Vishcha shkola. 415.
- 3. Babich A.A., Motornyy D.K. 1986: Resursoi energosberegayushchiye tekhnologii proizvodstva, khraneniya i ispolzovaniya kormov. Pod red. M.I.Zubtsa. K.: Urozhay. 104.
- 4. Svezhentsev A.I., Rensevich O.O. 1990: Netraditsiyni sposobi pidgotovki kormiv i ikh vikoristannya. K.: Urozhay. 160.
- 5. Revenko I.I. 1976: Tekhnologichniy yefekt i obrruntuvannya yakisnikh pokaznikiv podribnennya kormiv // Visnik s.-g. nauki. № 12. 76-80.
- 6. Revenko I.I. 1976: Otsinka yekonomichnoi yefektiv-nosti podribnennya kormovoi sirolvini // Visnik s.-g. nauki. № 3. –100-103.
- 7. Godivlya sviney u gospodarstvakh promislovogo tipu 1979: Za red. I.S.Tronchuka. K.: Urozhay. 152.
- 8. Godivlya silskogospodarskikh tvarin 2001: / V.S.Bomko, S.P.Babenko, O.Yu.Moskalyuk ta in. Vinnitsya: nova kn. -238.
- 9. Yevseyev N.K., Bondarev V.A. 1974: Ratsionalnyye sposoby podgotovki kormov k skarmliva-niyu. M.: kolos. 95.
- 10. Zhadan A.M. 1967: Granulovani kombi-kormi. K.: Urozhay. 56.
- 11. Zakharchenko I.M., Berzin Ya.M., Zakharchenko S.A. 1971: Effektivnost kombikormov raznoy dispersnosti v kormlenii sviney. Tr. VNII kombikormovoy promti. Vyp. 3. 111-125.
- 12. Knyazev K.I. 1979: Intansivnyy myasnoy otkorm sviney. M.: Kolos. 222.
- 13. Kozlovskiy V.G. 1972: Tekhnologiya promyshlennogo svinovodstva. M.: Rosselkhozizdat. 256.
- 14. Kopil A.M. 1973: Pidgotovka, zberigannya ta vikoristannya kormiv. K.: Urozhay. 290.
- 15. Kotlyarenko M. 1977: Podribnennya kombikormu i produktivnist. Tvarinnitstva Ukraini. № 1. 49.

- 26. Normi godivli, ratsioni i pozhivnist kormiv 2009: / G.V.Provatorov, V.I.Ladika, L.V.Bondarchuk ta in. Sumi: Universitets-ka kn. 492. 17. Tkachev I.F. 1962: Prigotovleniye i ratsionalnoye ispolzovaniye kormov. Krasnodar. 216.
- 18. Cole D/ et ol. 1970: Animal Production. Vol. 12. № 1. 139-150.
- 19. Gardner B. 1969: A new future for drien grass // Farmers weekly. Vol. 70. № 12. 68-71.
- 20. Hackl W., Fettback F., Wiss Z. 1969: Mathematisch-naturwissenschaftliche Reihe/ Universitat Rostock. Bd. 18. № 3-4. 459-462. 21. Lawrence T. 1970: Animal Production. Vol. 12. № 1. 139-150.
- 22. 358. Reitmann E. et al. 1968: J. of animal Sciece. Vol. 24. № 4. 992-999.
- 23. Tardani A. et ol. 1969: Rivista di Zootechnica. Roma. № 5. 284-306.
- 24. Golub G., Marus O. 2011: Optimizatsiya para-metriv mashin ta obladnannya // MOTROL, 13B, 15-19.
- 25. Revenko I.I., Braginets M.V., Rebenko V.I. 2009: Mashini ta obladnannya dlya tvarinnitstva. K.: Kondor. 731.
- 26. Ispytaniya selskokhozyaystvennoy tekhniki. Mashiny i oborudovaniye dlya prigotovleniya kormov. OST 70.19.2-83. M.: Goskomselkhoztekhnika SSSR, 1984.
- 27. Sposib prigotuvannya kombikormiv / Revenko I.I., Revenko Yu.I. Patent na korisnu model № 72675 (Ukraina). Opubl. 27.08.2012. Byul. № 16.
- 28. Marchenko V. 2003: Metodika viznachennya pokaznikiv yekonomichnoi yefektivnosti vikori-stannya kompleksiv mashin ta mashinno-traktornogo parku // MOTROL. T. 6. 189-194.

## QUALITY OF PREPARATION AND EFFICIENCY OF USING OF CONCENTRATED AND COMBINED FODDER

**Summary.** Grounded method and technical solutions that provide significant improvement of quality (uniformity of fractional composition) preparing concentrated and kombinorovan-tion of feed.

**Key words:** food, cooking quality, fractional composition, uniformity, the classification efficiency.