PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 15 | 1 |

Tytuł artykułu

Absolute and relative secondary-sexual dimorphism in wing morphology: A multivariate test of the ‘Big Mother’ hypothesis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In many bat species, average body size of females is larger than males. One common explanation is that larger females exhibit greater reproductive success. One avenue whereby increased size could positively affect fitness is by improving aerodynamic performance. We examined secondary sexual size dimorphism in wing elements of Artibeus lituratus. In particular we examined absolute differences, relative differences after controlling for disparities in body size, and differences in the degree of morphological integration of wing elements. Females were absolutely and relatively larger than males in many wing elements and exhibited no difference in morphological integration. Absolute and relative differences in size of wing elements are likely related to enhanced aerodynamic performance in females, especially related to weight gain during reproduction. Future studies should examine patterns of dimorphism across the geographic distribution of this species to better understand the particular ecological and environmental context in which such size differences manifest.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

1

Opis fizyczny

p.163-170,ref.

Twórcy

autor
  • Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
  • Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
  • Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA

Bibliografia

  • 1. L. F. Aguirre , A. Herrel , R. Van Damme , and E. Matthysen . 2003. The implications of food hardness for diet in bats. Functional Ecology, 17: 201–212.
  • 2. J. D. Altringham 1996. Bats: biology and behavior. Oxford University Press, Oxford, UK, 324 pp.
  • 3. M. Andersson 1994. Sexual selection. Princeton University Press, Princeton, NJ, 624 pp.
  • 4. S. Anderson 1960. Neotropical bats from western Mexico. University of Kansas Publications, Museum Natural History, 14: 1–8.
  • 5. H. T. Arita 1993. Rarity in Neotropical bats: correlations with phylogeny, diet and body mass. Ecological Applications, 3: 506–517.
  • 6. R. M. R. Barclay , and L. D. Harder . 2003. Life histories of bats: life in the slow lane. Pp. 209–253, in Bat ecology ( T. H. Kunz and M. B. Fenton , eds.). University of Chicago Press, Chicago, IL, 798 pp.
  • 7. C. Bergmann 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien, 3(1): 595–708.
  • 8. W. U. Blankenhorn 2005. Behavioral causes and consequences of sexual size dimorphism. Ethology, 111: 977–1016.
  • 9. W. Bogdanowicz 1992. Sexual dimorphism in size of the skull in European Myotis daubentoni (Mammalia: Chiroptera). Pp. 17–25, in Prague studies in mammalogy ( I. Horácek and V. Vohralík , eds.). Charles University Press, Praha, 245 pp.
  • 10. M. A. Bowers , and J. H. Brown . 1992. Structure in a desert rodent community: use of space around Dipodomys spectabilis mounds. Oecologia, 92: 242–249.
  • 11. J. L. Brooks , and S. I. Dodson . 1965. Predation, body size and composition of plankton. Science, 150: 28–35.
  • 12.E. R. Dumont 1999. The effect of food hardness on feeding behaviour in frugivorous bats (Phylostomidae): an experimental study. Journal of Zoology (London), 248: 219–229.
  • 13. R. S. Etienne , and H. Olff . 2004. How dispersal limitation shapes species-body size distributions in local communities. American Naturalist, 163: 69–83.
  • 14. J. S. Findley , E. H. Studier , and D. E. Wilson . 1972. Morphologic properties of bat wings. Journal of Mammalogy, 53: 429–444.
  • 15. T. H. Fleming 1988. The short tailed fruit bat: a study in plantanimal interactions. University of Chicago Press, Chicago, 365 pp.
  • 16. P. W. Freeman 2000. Macroevolution in Microchiroptera: recoupling morphology and ecology with phylogeny. Evolutionary Ecology Research, 2: 317–335.
  • 17. C. K. Geiselman , S. A. Mori , and F. Blanchard . 2002. Database of Neotropical Bat/Plant Interactions. Available at http://www.nybg.org/botany/tlobova/mori/batsplants/database/dbase_main.htm.
  • 18. T. H. Kunz 1974. Feeding ecology of a temperate insectivorous bat (Myotis velifer). Ecology, 55: 1–13.
  • 19. C. López-González , and O. J. Polaco . 1998. Variation and secondary sexual dimorphism of skeletal characters in Glossophaga morenoi and G. leachii from southwestern México (Chiroptera: Phyllostomidae). Zeitschrift für Säugetierkunde, 63: 137–146.
  • 20. M. R. Marchán-Rivadeneira , P. A. Larsen , C. J. Phillips , R. E. Strauss , and R. J. Baker . 2012. On the association between environmental gradients and skull size variation in the great fruit-eating bat, Artibeus lituratus (Chiroptera: Phyllostomidae). Biological Journal of the Linnean Society, 105: 623–634.
  • 21. E. S. McCulloch , J. S. Tello , A. Whitehead , C. M. J. Rolónmendoza , M. C. D. Maldonado-Rodríguez , and R. D. Stevens . In press. Fragmentation of Atlantic Forest has not affected gene flow of a widespread seed-dispersing bat. Molecular Ecology.
  • 22. B. K. McNab 1970. Body weight and energetics of temperature regulation. Journal of Experimental Biology, 53: 329–348.
  • 23. P. Myers 1978. Sexual dimorphism in size of verspertilionid bats. American Naturalist, 112: 701–711.
  • 24. P. Myers 1981. Observations on Pygoderma bilabiatum. Zeitschrift für Säugetierkunde, 46: 141–151. Google Scholar
  • 25. U. M. Norberg , and J. M. V. Rayner . 1987. Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society, 316B: 335–427. Google Scholar
  • 26. E. C Olson , and R. A. Miller . 1958. Morphological integration. University of Chicago Press, Chicago, IL, 376 pp.. Google Scholar
  • 27. B. D. Patterson , G. Ceballos , W. Sechrest , M. F. Tognelli , T. Brooks , L. Luna , P. Ortega , I. Salazar , and B. E. Young . 2007. Digital distribution maps of the mammals of the Western Hemisphere, version 3.0. NatureServe, Arlington, Virginia, USA. Google Scholar
  • 28. W. Peters 1864. Nachricht von einen neuen frugivoren Flederthiere, Stenoderma (Pygoderma) microdon aus Surinam. Monatsberichte der Königlich preussischen Akademie der Wissenschaften zu Berlin, 1863: 83–85. Google Scholar
  • 29. R. L. Peterson 1965. A review of the bats of the genus Ametrida, family Phyllostomatidae. Life Sciences Contributions, Royal Ontario Museum, 73: 1–13. Google Scholar
  • 30. R. F. Preziosi , D. J. Fairbairn , D. A. Roff , and J. M. Brennan . 1996. Body size and fecundity in the waterstrider Aquarius remigis: a test of Darwin's fecundity advantage. Oecologia, 108:424–431. Google Scholar
  • 31. P A. Racey 1982. Ecology of bat reproduction. Pp. 57–104, in Ecology of bats ( T. H. Kunz , ed.). Plenum Press, New York, 425 pp. Google Scholar
  • 32. K. Ralls 1976. Mammals in which females are larger than males. Quarterly Review of Biology, 51: 245276. Google Scholar
  • 33. K. Ralls 1977. Sexual dimorphism in mammals: avian models and unanswered questions. American Naturalist, 111: 917–938. Google Scholar
  • 34. A. M. Rui , M. E. Fabian , and J. O. Menegheti . 1999. Distribucao geografica e analise morfologica de Artibeus lituratus (Olfers) e de Artibeus fimbriatus (Gray) (Chiroptera, Phyllostomidae) no Rio Grande do Sul, Brasil. Revista Brasileira de Zoologia, 16: 447–460. Google Scholar
  • 35. T. W. Schoener 1967. The ecological significance of sexual dimorphism in size in the lizard Anolis conspersus. Science, 155: 474–476. Google Scholar
  • 36.R. K. Selander 1966. Sexual dimorphism and differential niche utilization in birds. Condor, 68: 113–151. Google Scholar
  • 37. R. S. Sikes , W. L. Gannon , and THE ANIMAL CARE AND USE COMMITTEE OF THE AMERICAN SOCIETY OF MAMMALOGISTS. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92: 235–253. Google Scholar
  • 38. F. A. Smith , J. H. Brown , J. P. Haskell , S. K. Lyons , J. Alroy , E. L. Charnov , T. Dayan , B. J. Enquist , S. K. M. Ernest , E. A. Hadley , et al. 2004. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. American Naturalist, 163: 672–691. Google Scholar
  • 39. R. D. Stevens 2005. Functional morphology meets macroecology: size and shape distributions of New World bats. Evolutionary Ecology Research, 7: 837–851. Google Scholar
  • 40. R. D. Stevens , M. R. Willig , and R. E. Strauss . 2006. Latitudinal gradients in the phenetic diversity of New World bat communities. Oikos, 112: 41–50. Google Scholar
  • 41. R. D. Stevens , M. R. Willig , and I. Gamarra De Fox . 2004. Comparative community ecology of bats in Eastern Paraguay: taxonomic, ecological, and biogeographic perspectives. Journal of Mammalogy, 85: 698–707. Google Scholar
  • 42. R. D. Stevens , and H. N. Amarilla-Stevens . 2012. Seasonal environments, episodic density compensation and the dynamics of chiropteran frugivore guilds in Paraguayan Atlantic forest. Biodiversity and Conservation, 21: 267–279. Google Scholar
  • 43. P. Swanepoel , and H. H. Genoways . 1979. Morphometries. Pp. 13–106, in Biology of bats of the New World family Phyllostomatidae. Part III ( R. J. Baker , J. K. Jones Jr., and D. C. Carter , eds.). Special Publications, The Museum, Texas Tech University, 16: 1–441. Google Scholar
  • 44. V. A. Taddei 1979. Phyllostomatidae (Chiroptera) do Norteocidental do Estado de Sao Paulo III-Stenoderminae. Ciencia y Cultura, 31: 900–914. Google Scholar
  • 45. J. R. Tamsitt , and D. Valdivieso . 1963. Records and observations of bats on Colombian bats. Journal of Mammalogy, 44: 168–180. Google Scholar
  • 46. M. R. Willig 1983. Composition, microgeographic variation, and sexual dimorphism in Caatingas and Cerrado bat communities from northeast Brazil. Bulletin of Carnegie Museum of Natural History, 23: 1–131. Google Scholar
  • 47. M. R. Willig , and R. R. Hollander . 1995. Secondary sexual dimorphism and phylogenetic constraints in bats: a multivariate approach. Journal of Mammalogy, 76: 981–992. Google Scholar
  • 48. M. R. Willig , B. D. Patterson , and R. D. Stevens . 2003. Patterns of range size, richness, and body size. Pp. 580–621, in Bat ecology ( T. H. Kunz and M. B. Fenton , eds.). University of Chicago Press, Chicago, IL, 798 pp.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-5aceb189-86e6-437f-87bd-28d4631820ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.