PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 16 | 2 |

Tytuł artykułu

Foliar application of salicylic acid with salinity stress on physiological and biochemical attributes of sunflower (Helianthus annuus L.) crop

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The potential agricultural lands are falling prey to salinity in the world over including Pakistan. The limited water supply is also becoming a serious problem to feed the humans and livestock production. Therefore, research studies were undertaken to enhance the growth and development of sunflower (Helianthus annuus L.) on saline soils to increase productively of crop. The treatments consisted of (a) two lines of sunflower (Hysun-33 and LG-56-63), (b) two levels of salinity (0, 120 mM (NaCl)) and (c) two levels of salicylic acid (0, 200 mg L-1) and were arranged in a completely randomized design with four replications. The results showed that biological yield was significantly reduced due to imposition of salinity at the rate of 120 mM (NaCl) on both sunflower lines (Hysun -33, LG 56-63). The stem length was also reduced due to decrease in biological yield in response to salinity. However, the exogenous application of salicylic acid at the rate of 200 mg L-1 mitigated the adverse effects of salts and improved the biological yield and stem length under saline and non-saline environments. The quantity of chlorophyll (SPAD) values were impacted negatively in response to salt stress, however, the phenomenon was recovered by foliar spray of salicylic acid. The nutrient concentration of K+, Cl- and Na+ were altered because of presence of excess quantity of NaCl in the substrate. The translocation of K+ ion was reduced substantially, while higher amount of Na+ and Cl- ions were absorbed, thus creating ionic imbalance in the plant system. The foliar spray of salicylic acid (200 mg L-1) enhanced the uptake of K+ from the soil medium. The salicylic acid proved a potential phytoprotectant to mitigate the adverse effects of salinity and thereby improving the physiological and biochemicals attributes, stem length and also enhanced uptake of K+ ion while depressing Na+ and Cl- ions in plant system.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

2

Opis fizyczny

p.57-74,fig.,ref.

Twórcy

autor
  • Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
autor
  • Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
autor
  • Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
autor
  • Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
  • Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agriculture University, Dhaka, Bangladesh

Bibliografia

  • Ahmad, P., Nabi, G., Ashraf, M. (2011). Calcium-induced oxidative damage in mustard ((Brassica napus L.) Czern & Coss) plants can be alleviated by salicylic acid. South Afr. J. Bot., 77, 36–44.
  • Akhtar, J., Ahmad, R., Ashraf, M.Y., Tanveer, A., Waraichand, E.A., Oraby, H. (2013). Influence of exogenous application of salicylic acid on salt-stressed mungbean (Vigna radiata): Growth and nitrogen metabolism. Pak. J. Bot., 45(1), 119–125.
  • Aldesuqny, H.S., Abbas, M.A., Abohamed, S.A., Elhakem, A.H., Alsokari, S.S. (2012). Glycinebetaine and salicylic acid induced modification in productivity of two different cultivars of wheat grown under water stress. J. Stress Physiol. Biochem., 8(2), 72–89.
  • Allen, S.E., Grimshaw, M., Rowland, A.P. (1986). Chemical analysis. In: Methods in plant ecology, Moore, P.D., Chapman, S.B. (eds). Blackwell Scientific Publications, Bostan, 285–344.
  • Arfan, M., Athar, H.R., Ashraf, M. (2007). Does exogenous application of salicylic acid through rooting medium modulate growth and photosynthetic capacity in differently adopted spring wheat cultivars under salt stress? J. Plant Physiol., 164(6), 685–694.
  • Ashraf, M., Harris, P.J.C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica, 51(2), 163–190.
  • Babar, S., Siddiqi, E.H., Hussain, I., Bhatti, K.H., Rasheed, R. (2014). Mitigating the effects of salinity by foliar application of salicylic acid in fenugreek. Physiol. J., 2014:869058. doi: 10.1155/2014/869058
  • Baghizadeh, A., Salarizadeh, M.R., Abaasi, F. (2014). Effects of salicylic acid on some physiological and biochemical parameters of Brassica napus L. (Canola) under salt stress. Int. J. Agric. Sci. 4(2), 147–152.
  • Bavei, V., Shiran, B., Khodambashi, M., Ranjbar, A. (2011). Protein electrophoretic profiles and physiochemical indicators of salinity tolerance in sorghum (Sorghum bicolor L.). Afr. J. Biotechnol., 10(14), 2683–2697.
  • Benzarti, M., Rejeb, K.B., Messedi, D., Mna, A.B., Hessini, K., Ksontini, M., Abdelly, C., Debez, A. (2014). Effect of high salinity on Atriplex portulacoides: Growth, leaf water relations and solute accumulation in relation with osmotic adjustment. South Afr. J. Bot., 95, 70–77.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1–2), 248–254.
  • Cuchiara, C.C., Silva, I.M.C., Martinazzo, E.G., Braga, E.J.B., Bacarin, M.A., Peters, J.A. (2013). Chlorophyll fluorescence transient analysis in Alternanthera tenella Colla plants grown in nutrient solution with different concentrations of copper. J. Agric. Sci., 5(8), 8–16.
  • Djanaguiraman, M., Prasad, P.W.V. (2013). Effect of salinity on ion transport, water relations and oxidative damage. In: Ecophysiology and responses of plants under salt stress, Ahmad, P., Azooz, M.M., Prasad, M.N.V. (eds). Springer, New York, 89–114.
  • Dong, C.J., Li, L., Shang, Q.M., Liu, X.Y., Zhang, Z.G. (2014) Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis Sativus L.) seedlings. Planta, 240(4), 687–700.
  • Epstein, E. (1972). Mineral nutrition of plants: principles and perspectives. John Wiley & Sons, New York. Fayez, K.A., Bazaid, S.A. (2014). Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J. Saudi Soc. Agric. Sci., 13(1), 45–55.
  • Francois, L.E. (1996). Salinity effects of four sunflower hybrids. Agron. J., 88, 215–219.
  • Guha, A., Sengupta, D, Raddy, A.R. (2013). Polyphasic chlorophyll ‘a’ fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. J. Photochem. Photobiol., B: Biology, 119, 71–83.
  • Hamilton, P.B., Van Slyke, D.D. (1943). Amino acid determination with ninhydrin. J. Biol. Chem., 150, 231–233.
  • Hasanuzzaman, M., Hossain, M.A., da Silva, J.A.T., Fujita M. (2012). Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker, A.K., Shanker, C., Mandapaka, M. (eds). Crop stress and its management: perspectives and strategies. Springer, Berlin, pp. 261–316.
  • Hasanuzzaman, M., Nahar, K., Alam, M.M, Roychowdhury, R., Fujita, M. (2013 a). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci., 14, 9643–9684.
  • Hasanuzzaman, M., Nahar, K., Fujita, M. (2013 b). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V. (eds). Ecophysiology and responses of plants under salt stress. Springer, New York, pp. 25–87.
  • Hasanuzzaman, M., Nahar, K., Fujita, M., Ahmad, P., Chandna, R., Prasad, M.N.V., Ozturk, M. (2013 c). Enhancing plant productivity under salt stress: Relevance of poly-omics. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V. (eds). Salt stress in plants: Signaling, omics and adaptations. Springer, New York, pp. 113–156.
  • Hasanuzzaman, M., Nahar, K., Alam, M.M., Ahmad, S., Fujita, M. (2015). Exogenous application of phytoprotectants in legume against environmental stress. In: Legumes under environmental stress, yield, improvement and adaptations, Azzoz, M.M., Ahmad, P. (eds). Wiley, New York, 161–198.
  • Hessini, K., Ferchichi, S., Youssef, S.B., Werner, K.H., Cruz, C., Gandour, M. (2015). How does salinity duration affect growth and productivity of cultivated barley? Agron. J., 107(1), 174–180.
  • Hoagland, D.R., Arnon, D.I. (1950). Water culture method for growing plants without soil. Calif. Agric. Expt. Sta. Circ., 347, 32.
  • Jajoo, A. (2013). Changes in photosystem II in response to salt stress. In: Ecophysiology and responses of plants under salt stress, Ahmed, P. (ed.). Springer, New York, 149–168.
  • Kong, G., Li, G., Zheng, B., Han, Q., Wang, C., Zhu, Y., Guo, D.T. (2012). Proteomic analysis on salicylic acidinduced salt tolerance in common wheat seedlings (Triticum aestivum L.). Biochim. Biophys. Acta., 1824(12), 1324–1333.
  • Kausar, A., Ashraf, M.Y., Niaz, M. (2014). Some physiological and genetic determinants of salt tolerance in sorghum (Sorghum Bicolor (L.) Moench), Biomass production and nitrogen metabolism. Pak. J. Bot., 46(2), 515–519.
  • Kishor, P.B.K., Rajesh, K., Reddy, P.S., Seiler, C., Sreenivasulce, N. (2014). Drought stress tolerance mechanisms in barley and its relevance to cereals. In: Biotechnological approaches to barley improvement, Kumlehn, J. Stein, N. (eds). Springer, Berlin, 161–179.
  • Kong, J., Dong, Y., Xu, L., Liu, S., Bai, X. (2014). Role of endogenous nitric oxide in alleviating iron deficiency induced peanut choruses on calcareous soils. Bot. Stud., 55, 9.
  • Loatfy, N., El-Tayeb, M.A., Hassanen, A.M., Moustafa, M.F., Sakuma, Y., Inouhe, M. (2012). Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in form different cultivars of wheat (Triticum aestivum L.). J. Plant Res., 125(1), 173–184.
  • Makino, A. (2011). Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. J. Plant Physiol., 155(1), 125–129.
  • Mehta, P., Allakhverdiev, S.I., Jajoo, A. (2010). Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosyn. Res., 105(3), 249–255.
  • Misra, N., Misra, R., Mariam, A., Yusufand, K., Yusuf, L. (2014). Salicylic acid alters antioxidant and phenolics metabolism in Catharanthus rosus groom under salinity stress. Afr. J. Tradit. Compl. Altern. Med., 11(5), 118–125.
  • Ni, L., Acharya, K. Hao, X., Li, S., Li, Y., Li, Y. (2012). Effects of artemisinin on photosystem II performance of Microcystis aeruginosa by in vivo chlorophyll fluorescence. Bull. Environ. Cont. Toxic., 89(6), 165–1169.
  • Noreen, S, Ashraf, M. (2008). Alleviation of adverse effects of salt stress on sunflower (Helianthus annuus L.) by exogenous application of salicylic acid: growth and photosynthesis. Pak. J. Bot., 40(4), 1657–1663.
  • Noreen, S., Ashraf, M., Akram, N.A. (2012). Does exogenous application of salicylic acid improves growth and some key physiological attributes in sunflower plants subjected to salt stress? J. Appl. Bot. Food Qual., 84, 169–177.
  • Noreen, S., Ashraf, M., Hussain, M., Jamil, A. (2009). Exogenous application of salicylic acid enhances antioxidative capacity in the salt stressed sunflower (Helianthus annuus L.) plants. Pak. J. Bot., 41(1), 473–479.
  • Noreen, S., Athar, H.R., Ashraf, M. (2013). Interactive effects of watering regimes and exogenously applied osmoprotectants on earliness indices and leaf area index in cotton (Gossypium hirsutum L.) crop. Pak. J. Bot., 45(6), 1873–1881.
  • Noreen, S., Noor, S., Ahmad, S., Bibi, F., Hasanuzzaman, M (2016). Quantifying some physiological and productivity indices of canola (Brasica napus L.) crop under an arid environment. Not. Bot. Horti Agrobot., 44, 272–279.
  • Parashar, A., Yusuf, M., Fariduddin, Q., Ahmad, A. (2014). Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese. Int. J. Biol. Macromolec., 70, 551–558.
  • Radi, A.A., Farghaly, F.A., Hamada, A.M. (2013). Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity. J. Biol. Earth Sci., 3(1), 72–88.
  • Rashad, R.T., Hussain, R.A. (2014). A comparison study on the effect of some growth regulators on the nutrients content of maize plant under salinity conditions. Ann. Agric. Sci., 59(1), 89–94.
  • Rasool, S., Ahmad, A., Siddiqui, T.O., Ahmad, P. (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta. Physiol. Plant, 35(4), 1039–1050.
  • Razzaghi, F., Sven-Erik, J., Jensen, C.R., Andersenm, N. (2015). Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought – mechanisms of tolerance. Funct. Plant Biol., 42(2), 136–148.
  • Rivas, S., Vicente, M., Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. J. Expt. Bot., 62, 3321–3338.
  • Sahar, K., Amin, B., Taher, N.M. (2011). The salicylic acid effect on the Salvia officianlis L. sugar, protein and proline contents under salinity (NaCl) stress. J. Stress Physiol. Biochem., 7(4), 80–87.
  • Shahbaz, M., Ashraf, M. (2013). Improving salinity tolerance in cereals. Crit. Rev. Plant Sci., 32(4), 237–249.
  • Strasser, A., Tsimilli-Michael, M, Srivastava, A. (2004). Analysis of the fluorescence transient. In: Chlorophyll fluorescence: A signature of photosynthesis, Papageorgiou, G.C., Govindjee (eds). Springer, Dordrecht, pp. 321–362.
  • Steel, R.G., Torrie, J.H. (2000). Principles and procedures of statistics in scientific research. 4th Ed. Mc Graw Hill, New York. Tufail, A., Arfan, M., Gurmani, A.R., Khan, A., Bano, A. (2013). Salicylic acid induced salinity tolerance in maize (Zea mays). Pak. J. Bot., 45, 75–82.
  • Varshney, R.K, Rookiwol, M, Nguyen, H.N. (2013). Resources to molecular breeding. Plant Gen., 6, 1–7.
  • Yang, W., Zhu, C., Ma, X., Li, G., Gan, L., Ng, D., Xia, K. (2013). Hydrogen peroxide is a second messenger in the salicylic acid triggered adventitious rooting process in mung bean seedlings. PLoS One 8(12), e84580. doi: 10.1371/journal.pone.0084580
  • Yi, X., Sun, Y., Yang, Q., Guo, A., Chang, L., Wang, D., Tong, Z., Jin, X., Wang, L., Yu, J., Jin, W., Xie, Y., Wang, X. (2014). Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance. J. Proteom., 99, 84–100.
  • Zhang, L.X., Lai, J.H., Liang, Z.S., Ashraf, M. (2014). Interactive effects of sudden and gradual drought stress and foliar applied glycinebetaine on growth, water relations, osmolyte accumulation and antioxidant defence system in two maize cultivars differing in drought tolerance. J. Agron. Crop Sci., 200(6), 425–433.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-58df429a-09e4-48da-8127-a685ba0039ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.