PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Soil water and salt transport and its influence on groundwater quality: a case study in the Kongque River Region of China

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Unreasonable exploitation of groundwater resources in the Kongque River region has led to a decline in the groundwater table, groundwater salinization, and other geo-environmental problems. Therefore, this study supplements the studies on soil water and salt transport in the Kongque River region, and provides a new method for the prevention of groundwater salinization in arid and semiarid regions. In this study, soil column experiments were carried out to investigate the influence of lithological structures of the unsaturated zone, water quality, and methods of irrigation on soil water and salt transport. Based on the data from the experiment, a one-dimensional model of soil water and salt transport was built to predict the impact of long-term irrigation on groundwater quality using Hydrus-1D. The results showed that groundwater TDS increased in the predicted scenarios and that groundwater quality was greatly influenced by irrigation water with high TDS values. The influence of long-term irrigation on groundwater quality was smallest for drip irrigation, which can save water and should be promoted. The influence of irrigation on groundwater quality was largest for flood irrigation. If flood irrigation cannot be avoided, then it is recommended that water with a TDS below 2 g/L should be used.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1637-1650,fig.,ref.

Twórcy

autor
  • Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, China
  • Institute of Water Resources and Environment, Jilin University, Changchun, China
autor
  • Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, China
  • Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, China
  • Institute of Water Resources and Environment, Jilin University, Changchun, China
  • College of New Energy and Environment, Jilin University, Changchun, China
autor
  • Jilin Geophysical Prospecting and Surveying Company, Changchun, China
autor
  • Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, China
  • Institute of Water Resources and Environment, Jilin University, Changchun, China
autor
  • Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, China
  • Institute of Water Resources and Environment, Jilin University, Changchun, China

Bibliografia

  • 1. RAMOS T.B., SIMUNEK J., GONCALVES M.C., MARTINS J.C., PRAZERES A., CASTANHEIRA N.L. Field evaluation of a multicomponent solute transport model in soils irrigated with saline waters. Journal of Hydrology, 407 (1), 129, 2011.
  • 2. RAHMAN M.M., HAGARE D., MAHESHWARI B., DILLON P. Impacts of prolonged drought on salt accumulation in the root zone due to recycled water irrigation. Water, Air, & Soil Pollution, 226 (4), 1, 2015.
  • 3. REN D., XU X., HAO Y., HUANG G. Modeling and assessing field irrigation water use in a canal system of hetao, upper yellow river basin: application to maize, sunflower and watermelon. Journal of Hydrology, 532, 122, 2016.
  • 4. SHANG F.Z., REN S.M., YANG P.L., LI C.S., XUE Y.D., HUANG L.M. Modeling the risk of the salt for polluting groundwater irrigation with recycled water and ground water using hydrus-1 d. Water, Air, & Soil Pollution, 227 (6), 1, 2016.
  • 5. KANZARI S., HACHICHA M., BOUHLILA R., BATTLE-SALES J. Characterization and modeling of water movement and salts transfer in a semi-arid region of Tunisia (bou hajla, kairouan) – salinization risk of soils and aquifers. Computers & Electronics in Agriculture, 86, 34, 2011.
  • 6. TEDESCHI A., DELL A.R. Effects of irrigation with saline waters, at different concentrations, on soil physical and chemical characteristics. Agricultural Water Management, 77 (1), 308, 2005.
  • 7. ABUSHARAR T.M., SALAMEH A.S. Reductions in hydraulic conductivity and infiltration rate in relation to aggregate stability and irrigation water turbidity. Agricultural Water Management, 29 (1), 53, 1995.
  • 8. KANZARI S., HACHICHA M., BOUHLILA R., BATTLE-SALES J. Simulation of water and salts dynamics in Bouhajla (Central Tunisia): exceptional rainfall effect. Soil and Water Research, 7 (1), 36, 2012.
  • 9. FORKUTSA I., SOMMER R., SHIROKOVA Y.I., LAMERS J.P.A, KIENZLER K., TISCHBEIN B. Modeling irrigated cotton with shallow groundwater in the aral sea basin of Uzbekistan: ii. soil salinity dynamics. Irrigation Science, 27 (4), 319, 2009.
  • 10. ZENG W.Z., XU C., WU J.W., HUANG J.S. Soil salt leaching under different irrigation regimes: hydrus-1d modelling and analysis. Journal of Arid Land, 6 (1), 44, 2014.
  • 11. ZHU Y.H., REN L.L., SKAGGS T.H., LV H.S., YU Z.B., WU Y.Q., FANG X.Q. Simulation of populus euphratica, root uptake of groundwater in an arid woodland of the Ejina basin, China. Hydrological Processes, 23 (17), 2460, 2009.
  • 12. ASKRI B., AHMED A.T., ABICHOU T., BOUHLILA R. Effects of shallow water table, salinity and frequency of irrigation water on the date palm water use. Journal of Hydrology, 513, 81, 2014.
  • 13. SULEIMAN A.A. Modeling daily soil water dynamics during vertical drainage using the incoming flow concept. Catena, 73 (3), 312, 2008.
  • 14. SIMUNEK J., GENUCHTEN M.T.V., SEJNA M. Development and applications of the hydrus and stanmod software packages and related codes. Vadose Zone Journal, 7 (9), 587, 2008.
  • 15. CHEN W.P., HOU Z.N., WU L.S., LIANG Y.C., WEI C.Z., YANG J.S. Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest china. Agricultural Water Management, 97 (12), 2001, 2010.
  • 16. SHOUSE P.J., AYARS J.E., SIMUNEK J. Simulating root water uptake from a shallow saline groundwater resource. Agricultural Water Management, 98 (5), 784, 2011.
  • 17. LI H.J., YI J., ZHANG J.G., ZHAO Y., SI B.C., HILL R.L., CUI L.L., LIU X.Y.Modeling of soil water and salt dynamics and its effects on root water uptake in Heihe arid wetland, Gansu, China. Water, 7 (5), 2382, 2015.
  • 18. HAJ-AMOR Z., IBRAHIMI M.K., FEKI N., LHOMME J.P., BOURI S. Soil salinisation and irrigation management of date palms in a saharan environment. Environmental Monitoring & Assessment, 188 (8), 497, 2016.
  • 19. JOVANOVIC N.Z., JARMAIN C., CLERCQ W.D., VERMEULEN T., FEY M.V. Total evaporation estimates from a renosterveld and dryland wheat/fallow surface at the Vo Lvlei nature reserve (south africa). Water Sa, 37 (4), 471, 2011.
  • 20. IBRAHIMI M.K., MIYAZAKI T., NISHIMURA T., IMOTO H. Contribution of shallow groundwater rapid fluctuation to soil salinization under arid and semiarid climate. Arabian Journal of Geosciences, 7 (9), 3901, 2014.
  • 21. HOU L.Z., WANG X.S., HU B.X., SHANG J., WAN L. Experimental and numerical investigations of soil water balance at the hinterland of the Badain Jaran desert for groundwater recharge estimation. Journal of Hydrology, 540, 386, 2016.
  • 22. CHEN Y.X., YANG F.T., SU X.S., XIE N., BAI M., ZHANG X. Estimation of groundwater renewal rate using environmental isotopes in the arid upper peacock river, nw China. Journal of Radioanalytical & Nuclear Chemistry, 310 (2), 911, 2016.
  • 23. WANG Z., JIN M., SIMUNEK J., GENUCHTEN M.T.V. Evaluation of mulched drip irrigation for cotton in arid northwest China. Irrigation Science, 32 (1), 15, 2014.
  • 24. ZHANG Z.Y., WANG W.K., CHEN L., ZHAO Y.Q., AN K.D., ZHANG L., LIU H.Z. Finite analytic method for solving the unsaturated flow equation. Vadose Zone Journal, 14 (1), 2015.
  • 25. LI X.W., JIN M.G., ZHOU N.Q., HUANG J.O., JIANG S.M., TELESPHORE H. Evaluation of evapotranspiration and deep percolation under mulched drip irrigation in an oasis of tarim basin, China. Journal of Hydrology, 538, 677, 2016.
  • 26. ZHANG Z.Y., WANG W.K., YEH T.C.J., CHEN L., WANG Z.F., DUAN L., AN K.D., GONG C.C. Finite analytic method based on mixed-form richards’ equation for simulating water flow in vadose zone. Journal of Hydrology, 537, 146, 2016.
  • 27. WANG W.K., ZHANG Z.Y., YEH T.C.J., QIAO G., WANG W.M., DUAN L., HUANG S.Y., WEN J.C. Flow dynamics in vadose zones with and without vegetation in an arid region. Advances in Water Resources, 106, 68, 2017.
  • 28. CHEN W.L., JIN M.G., FERRE T.P., LIU Y.F., XIAN Y., SHAN T.R., PING X. Spatial distribution of soil moisture, soil salinity, and root density beneath a cotton field under mulched drip irrigation with brackish and fresh water. Field Crops Research, 215 (215), 207, 2018.
  • 29. ZHOU J.L., LI Q., GUO Y.C., GUO X.J., LI X.W., ZHAO Y.J., JIA R.L. VLDA model and its application in assessing phreatic groundwater vulnerability: a case study of phreatic groundwater in the plain area of yanji county, xinjiang, china. Environmental Earth Sciences, 67 (6), 1789, 2012.
  • 30. JIRKA S. Modeling nonequilibrium flow and transport processes using hydrus. Vadose Zone Journal, 7 (2), 782, 2008.
  • 31. MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12 (3), 513, 1976.
  • 32. GENUCHTEN M.T.V. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44 (44), 892, 1980.
  • 33. GENUCHTEN M.T.V. A numerical model for water and solute movement in and below the root zone., Unpub Research Report; USA, 1987.
  • 34. FEDDES R.A., KOWALIK P.J., ZARADNY H. Simulation of field water use and crop yield. Soil Science, 129 (3), 193, 1982.
  • 35. WANG T.J., ZLOTNIK V.A., SIMUNEK J, SCHAAP M.G. Using pedotransfer functions in vadose zone models for estimating groundwater recharge in semiarid regions. Water Resources Research, 45 (4), 546, 2009.
  • 36. XIE T., LIU X.H., SUN T. The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China. Ecological Modelling, 222 (2), 241, 2011.
  • 37. CHEN L.J., FENG Q., LI F.R., LI C.S. A bidirectional model for simulating soil water flow and salt transport under mulched drip irrigation with saline water. Agricultural Water Management, 146 (24), 24, 2014.
  • 38. XU C., ZENG W.Z., WU J.W., HUANG J.S. Effects of different irrigation strategies on soil water, salt, and nitrate nitrogen transport. Ecological Chemistry & Engineering S, 22 (4), 589, 2015.
  • 39. LIU M.X., YANG J.S., LI X.M., LIU G.M., YU M., WANG J. Distribution and dynamics of soil water and salt under different drip irrigation regimes in northwest China. Irrigation Science, 31 (4), 675, 2013.
  • 40. CHEN W.P., LU S.D., PAN N., JIAO W.T. Impacts of long-term reclaimed water irrigation on soil salinity accumulation in urban green land in Beijing. Water Resources Research, 49 (11), 7401, 2013.
  • 41. CHEN L.J., FENG Q., LI F.R., LI C.S. Simulation of soil water and salt transfer under mulched furrow irrigation with saline water. Geoderma, 241, 87, 2015.
  • 42. GEN-JIAN Y.U., HUANG J.S., GAO Z.Y. Study on water and salt transportation of different irrigation modes by the simulation of hydrus model. Journal of Hydraulic Engineering, 44 (7), 826, 2013.
  • 43. WANG X.P., LIU G.M., YANG J.S., HUANG G.H., YAO R.J. Evaluating the effects of irrigation water salinity on water movement, crop yield and water use efficiency by means of a coupled hydrologic/crop growth model. Agricultural Water Management, 185, 13, 2017.
  • 44. GAO X.Y., HUO Z.L., BAI Y.N., FENG S.Y., HUANG G.H., SHI H.B., QU Z.Y. Soil salt and groundwater change in flood irrigation field and uncultivated land: a case study based on 4-year field observations. Environmental Earth Sciences, 73 (5), 2127, 2015.
  • 45. SELIM T., BOUKSILA F., BERNDTSSON R., PERSSON M. Soil water and salinity distribution under different treatments of drip irrigation. Soil Science Society of America Journal, 77 (4), 1144, 2013.
  • 46. GELHAR L.W., CLAIRE W., REHFELDT K.R. A critical review of data on field-scale dispersion in aquifers. Water Resources Research, 28 (7), 1955, 1992.
  • 47. YAKIREVICH A., WEISBROD N., KUZNETSOV M., RIVERA V.C.A., Benavent I., CHAVEZ A.M. Modeling the impact of solute recycling on groundwater salinization under irrigated lands: a study of the alto piura aquifer, peru. Journal of Hydrology, 482 (482), 25, 2013.
  • 48. CHAIYASIT P., DUANGPATRA P., VERASAN V., VUDHIVANICH V. Study on movement of water and salt through soil column and utilization of hydrus-1d program to simulate five scenarios of crop production in salt affected paddy soil. Modern Applied Science, 10 (1), 139, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-580c5a1c-ddc3-42d0-bfe0-f9012a9796f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.