PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 1 |

Tytuł artykułu

Decay of γ - H2AX foci correlates with potentially lethal damage repair and P53 status in human colorectal carcinoma cells

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The influence of p53 status on potentially lethal damage repair (PLDR) and DNA double-strand break (DSB) repair was studied in two isogenic human colorectal carcinoma cell lines: RKO (p53 wild-type) and RC10.1 (p53 null). They were treated with different doses of ionizing radiation, and survival and the induction of DNA-DSB were studied. PLDR was determined by using clonogenic assays and then comparing the survival of cells plated immediately with the survival of cells plated 24 h after irradiation. Doses varied from 0 to 8 Gy. Survival curves were analyzed using the linear-quadratic formula: S(D)/S(0) = exp-(αD+βD2). The γ-H2AX foci assay was used to study DNA DSB kinetics. Cells were irradiated with single doses of 0, 0.5, 1 and 2 Gy. Foci levels were studied in non-irradiated control cells and 30 min and 24 h after irradiation. Irradiation was performed with gamma rays from a 137Cs source, with a dose rate of 0.5 Gy/min. The RKO cells show higher survival rates after delayed plating than after immediate plating, while no such difference was found for the RC10.1 cells. Functional p53 seems to be a relevant characteristic regarding PLDR for cell survival. Decay of γ-H2AX foci after exposure to ionizing radiation is associated with DSB repair. More residual foci are observed in RC10.1 than in RKO, indicating that decay of γ-H2AX foci correlates with p53 functionality and PLDR in RKO cells.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

1

Opis fizyczny

p.37-51,fig.,ref.

Twórcy

  • Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
autor
  • Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
  • Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
autor
  • Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
autor
  • van Leeuwenhoek Center for Advanced Microscopy AMC, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
autor
  • van Leeuwenhoek Center for Advanced Microscopy AMC, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
  • Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
  • Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands

Bibliografia

  • 1. Kanaar, R, Hoeijmakers, J.H.J. and van Gent, D.C. Molecular mechanisms of DNA double-strand break repair. Trends Cell Biol. 8 (1998) 483-489.
  • 2. Franken, N.A., ten Cate, R., Krawczyk, P.M., Stap, J., Haveman, J., Aten, J. and Barendsen, G.W. Comparison of RBE values of high-LET α-particles for the induction of DNA-DSBs, chromosome aberrations and cell reproductive death. Radiat. Oncol. 6 (2011) 64.
  • 3. Bergs, J.W., Krawczyk, P.M., Borovski, T., ten Cate, R., Rodermond, H.M., Stap, J., Medema, J.P., Haveman, J., Essers, J., van Bree, C., Stalpers, L.J., Kanaar, R., Aten, J.A. and Franken NA. Inhibition of homologous recombination by hyperthermia shunts early double strand break repair to non-homologous end-joining. DNA Repair (Amst) 12 (2013) 38-45.
  • 4. Korlimarla, A., Bhandary, L., Prabhu, J.S., Shankar, H., Sankaranarayanan, H., Kumar, P., Remacle, J., Natarajan, D. and Sridhar, T.S. Identification of a non-canonical nuclear localization signal (NLS) in BRCA1 that could mediate nuclear localization of splice variants lacking the classical NLS. Cell. Mol. Biol. Lett. 18 (2013) 284-296.
  • 5. Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. and Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273 (1998) 5858-5868.
  • 6. Aten, J.A., Stap, J., Krawczyk, P.M., van Oven, C.H., Hoebe, R.A., Essers, J. and Kanaar, R. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303 (2004) 92-95.
  • 7. Rogakou, E.P., Boon, C., Redon, C. and Bonner, W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146 (1999) 905-915.
  • 8. Vandersickel, V., Depuydt, J., Van Bockstaele, B., Perletti, G., Philippe, J., Thierens, H. and Vral, A. Early increase of radiation-induced γH2AX foci in a human Ku70/80 knockdown cell line characterized by an enhanced radiosensitivity. J. Radiat. Res. 51 (2010) 633-641.
  • 9. Van Oorschot, B., Hovingh, S.E., Rodermond, H., Güçlü, A., Losekoot, N., Geldof, A.A., Barendsen, G.W., Stalpers, L.J. and Franken, N.A. Decay of γ-H2AX foci correlates with potentially lethal damage repair in prostate cancer cells. Oncol. Rep. 29 (2013) 2175-2180.
  • 10. Banáth, J.P., Klokov, D., MacPhail, S.H., Banuelos, C.A. and Olive, P.L. Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer 10 (2010) 4.
  • 11. Olive, P.L. and Banáth, J.P. Phosphorylation of histone H2AX as a measure of radiosensitivity. Int. J. Radiat. Oncol. Biol. Phys. 58 (2004) 331-335.
  • 12. Fujii, Y., Genet, M.D., Roybal, E.J., Kubota, N., Okayasu, R., Miyagawa, K., Fujimori, A. and Kato, T.A. Comparison of the bromodeoxyuridinemediated sensitization effects between low-LET and high-LET ionizing radiation on DNA double-strand breaks. Oncol. Rep. 29 (2013) 2133-2139.
  • 13. Hublarova, P., Greplova, K., Holcakova, J., Vojtesek, B. and Hrstka, R. Switching p53-dependent growth arrest to apoptosis via the inhibition of DNA damage-activated kinases. Cell. Mol. Biol. Lett. 15 (2010) 473-484.
  • 14. Franken, N.A., van Bree, C. and Haveman, J. Differential response to radiation of TP53-inactivated cells by overexpression of dominant-negative mutant TP53 or HPVE6. Radiat. Res. 161 (2004) 504-510.
  • 15. Kumala, S., Niemiec, P., Wideł, M., Hancock, R. and Rzeszowska-Wolny, J. Apoptosis and clonogenic survival in three tumour cell lines exposed to gamma rays or chemical genotoxic agents. Cell. Mol. Biol. Lett. 8 (2003) 655-665.
  • 16. Hikisz, P. and Kiliańska, Z.M. PUMA, a critical mediator of cell death--one decade on from its discovery. Cell. Mol. Biol. Lett. 17 (2012) 646-669.
  • 17. Schwartz, J.L., Rasey, J., Wiens, L., Jordan, R. and Russell, K.J. Functional inactivation of p53 by HPV-E6 transformation is associated with a reduced expression of radiation-induced potentially lethal damage. Int. J. Radiat. Biol. 75 (1999) 285-291.
  • 18. Schwartz, J.L., Jordan, R., Kaufmann, W.K., Rasey, J., Russel, K.J. and Weichselbaum, R.R. Evidence for the expression of radiation-induced potentially lethal damage being a p53-dependent process. Int. J. Radiat. Biol. 76 (2000) 1037-1043.
  • 19. Franken, N.A., van Bree, C, ten Cate, R, van Oven, C.H. and Haveman J. Importance of TP53 and RB in the repair of potentially lethal damage and induction of color junctions after exposure to ionizing radiation. Radiat. Res. 158 (2002) 707-714.
  • 20. Iliakis, G., Wang, Y, Pantelias, G.E. and Metzger, L. Mechanism of radiosensitization by halogenated pyrimidines: effect of BrdU on repair of DNA breaks, interphase chromatin breaks, and potentially lethal damage in plateau-phase CHO cells. Radiat. Res. 129 (1992) 202-211.
  • 21. Franken, N.A., van Bree, C., Kipp , J.B. and Barendsen, G.W. Modification of potentially lethal damage in irradiated Chinese hamster V79 cells after incorporation of halogenated pyrimidines. Int. J. Radiat. Biol. 72 (1997) 101-109.
  • 22. Franken, N.A., van Bree, C., Veltmaat, M.A., Rodermond, H.M., Haveman, J. and Barendsen, G.W. Radiosensitization by bromodeoxyuridine and hyperthermia: analysis of linear and quadratic parameters of radiation survival curves of two human tumor cell lines. J. Radiat. Res. 42 (2001) 179-190.
  • 23. Franken, N.A.P., Van Bree, C., Streefkerk, J., Kuper, I., Rodermond, H., Kipp, J.B., Haveman, J. and Barendsen, G.W. Radiosensitization by iododeoxyuridine in cultured SW-1573 human lung tumor cells: Effects on alpha and beta of the linear-quadratic model. Oncol. Rep. 4 (1997) 1073-1076.
  • 24. Franken, N.A., ten Cate, R., van Bree, C. and Haveman, J. Induction of the early response protein EGR-1 in human tumour cells after ionizing radiation is correlated with a reduction of repair of lethal lesions and an increase of repair of sublethal lesions. Int. J. Oncol. 24 (2004) 1027-1031.
  • 25. Franken, N.A., Oei, A.L., Kok, H.P., Rodermond, H.M., Sminia, P., Crezee J., Stalpers, L.J. and Barendsen, G.W. Cell survival and radiosensitisation: modulation of the linear and quadratic parameters of the LQ model (Review). Int. J. Oncol. 42 (2013) 1501-1515.
  • 26. Barendsen, G.W. Parameters of linear-quadratic radiation dose-effect relationships: dependence on LET and mechanisms of reproductive cell death. Int. J. Radiat. Biol. 71 (1997) 649-655.
  • 27. Barendsen, G.W., van Bree, C. and Franken, N.A. Importance of cell proliferative state and potentially lethal damage repair on radiation effectiveness: implications for combined tumor treatments (review). Int. J. Oncol. 19 (2001) 247-256.
  • 28. Bergs, J.W., Franken, N.A.P, ten Cate, R., van Bree, C., Haveman, J. Effects of cisplatin and gamma-irradiation on cell survival, the induction of chromosomal aberrations and apoptosis in SW-1573 cells. Mutat. Res. 594 (2006) 148-154.
  • 29. Franken, N.A. and Barendsen, G.W. In Regard to Ohri N et al. Int. J. Radiat. Oncol. Biol. Phys. 86 (2013) 598.
  • 30. Danielsen, T., Smith-Sørensen, B., Grønlund, H.A., Hvidsten, M, BørresenDale, A.L. and Rofstad, E.K. No association between radiosensitivity and TP53 status, G1 arrest or protein levels of p53, myc, ras or raf in human melanoma lines. Int. J. Radiat. Biol. 75 (1999) 1149-1160.
  • 31. Van Bree, C., Franken, N.A.P., Rodermond, H.M., Stalpers, L.J. and Haveman, J. Repair of potentially lethal damage does not depend on functional TP53 in human glioblastoma cells. Radiat. Res. 161 (2004) 511-516.
  • 32. Kessis, T.D., Slebos, R.J., Nelson, W.G., Kastan, M.B., Plunkett, B.S., Han, S.M., Lorincz, A.T. Hedrick, L. and Cho, K.R. Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc. Natl. Acad. Sci. USA 90 (1993) 3988-3992.
  • 33. Franken, N.A., Rodermond, H.M., Stap, J., Haveman, J. and van Bree C. Clonogenic assay of cells in vitro. Nat. Protoc. 1 (2006) 2315-2319.
  • 34. Franken, N.A.P., Hovingh, S., ten Cate, R., Krawczyk, P., Stap, J., Hoebe, R., Aten, J. and Barendsen, G.W. Relative biological effectiveness of high linear energy transfer α-particles for the induction of DNA-double-strand breaks, chromosome aberrations and reproductive cell death in SW-1573 lung tumour cells. Oncol. Rep. 27 (2012) 769-774.
  • 35. Van Bree, C., Franken, N.A., Rodermond, H.M., Stalpers, L.J. and Haveman, J. Repair of potentially lethal damage does not depend on functional TP53 in human glioblastoma cells. Radiat. Res. 161 (2004) 511-516.
  • 36. Van Bree, C., Savonije, J.H., Franken, N.A.P., Haveman, J., Bakker, P.J. The effect of p53-function on the sensitivity to paclitaxel with or without hyperthermia in human colorectal carcinoma cells. Int. J. Oncol. 16 (2000) 739-744.
  • 37. Tolde, O. and Folk, P. Stress-induced expression of p53 target genes is insensitive to SNW1/SKIP downregulation. Cell. Mol. Biol. Lett. 16 (2011) 373-384.
  • 38. Ngok-Ngam, P., Watcharasit, P., Thiantanawat, A., Satayavivad, J. Pharmacological inhibition of GSK3 attenuates DNA damage-induced apoptosis via reduction of p53 mitochondrial translocation and Bax oligomerization in neuroblastoma SH-SY5Y cells. Cell. Mol. Biol. Lett. 18 (2013) 58-74.
  • 39. MacPhail, S.H., Banáth, J.P., Yu, Y., Chu, E. and Olive, P.L. Cell cycledependent expression of phosphorylated histone H2AX: reduced expression in unirradiated but not X-irradiated G1-phase cells. Radiat. Res. 159 (2003) 759-767.
  • 40. Taneja, N., Davis, M., Choy, J.S., Becket, M.A., Singh, R., Kron, D.J. and Weichselbaum, R.R. Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. J. Biol. Chem. 279 (2004) 2273-2280.
  • 41. Mahrhofer, H., Bürger, S., Oppitz, U., Flentje, M. and Djuzenova, C.S. Radiation induced DNA damage and damage repair in human tumor and fibroblast cell lines assessed by histone H2AX phosphorylation. Int. J. Radiat. Oncol. Biol. Phys. 64 (2006) 573-580.
  • 42. Yoshikawa, T., Kashino, G., Ono, K. and Watanabe, M. Phosphorylated H2AX foci in tumor cells have no correlation with their radiation sensitivities. J. Radiat. Res. 50 (2009) 151-160.
  • 43. Yu, T., MacPhail, S.H., Banáth, J.P., Klokov, D. and Olive, P.L. Endogenous expression of phosphorylated histone H2AX in tumors in relation to DNA double-strand breaks and genomic instability. DNA Repair (Amst) 5 (2006) 935-946.
  • 44. Suzuki, M., Suzuki, K., Kodoma, S. and Watanabe, M. Phosphorylated histone H2AX foci persist on rejoined mitotic chromosomes in normal human diploid cells exposed to ionizing radiation. Radiat. Res. 165 (2006) 269-276.
  • 45. Markova, E., Schultz, N., Belyaev, I.Y. Kinetics and dose-response of residual 53BP1/gamma-H2AX foci:Co-localization, relationship with DSB repair and clonogenic survival. Int. J. Radiat. Biol. 83 (2007) 319-329.
  • 46. Belyaev, I.Y. Radiation-induced DNA repair foci: Spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Mutat. Res. 704 (2010) 132-141.
  • 47. Kuefner, M.A, Brand, M., Engert, C., Kappey, H., Uder, M., Distel, L.V. The effect of calyculin A on the dephosphorylation of the histone gammaH2AX after formation of X-ray-induced DNA double-strand breaks in human blood lymphocytes. Int. J. Radiat. Biol. 89 (2013) 424-432.
  • 48. Franken, N.A., Ruurs, P., Ludwików, G., van Bree, C., Kipp, J.B., Darroudi, F. and Barendsen, G.W. Correlation between cell reproductive death and chromosome aberrations assessed by FISH for low and high doses of radiation and sensitization by iodo-deoxyuridine in human SW-1573 cells. Int. J. Radiat. Biol. 75 (1999) 293-299.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-57e69152-510e-444b-8ee9-24b43c2f1bb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.