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Abstract: The Black poplar is a pioneer tree species occurring along many river courses across Europe. 
Seedlings establish at very high density and experience various stresses (e.g., hydric, mechanical). In a 
previous study conducted in 2017 on the same population we described the fine-scale genetic structure 
(FSGS) of three age cohorts (5, 10 and > 20 years old) and found a significant SGS in the younger cohort. 
In this study, we aim to determine the FSGS in Black poplar cohorts of one-year-old seedlings, which is the 
most informative about seed dispersal.We used microsatellite markers to explore the FSGS of four different 
patches of Back poplar seedlings from two riverbanks in the Val d’Allier National Natural Reserve (France). 
We found a high genetic diversity and detected no FSGS in any of the four sampled seedlings patches. The 
absence of SGS at the seedling stage suggests that in this natural population, seeds from different mother 
trees are widely dispersed, well mixed and are deposited homogeneously on the various germination sites 
available over few kilometres.
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Introduction
The Black poplar (Populus nigra L., Salicaceae) is 

a pioneer tree species with a good tolerance to sub-
mersion, sediment burial and high temperatures 
occurring along many river courses across Europe 
(Chamaillard, 2011). The species is dioecious, and 
a female tree produces each year millions of short 
living seeds which are transported by both wind and 
water (Barrat-Segretain, 1996; Karrenberg et al., 
2002). Seeds germinate immediately after arrival on 
suitable bare moist alluvial bars (Barsoum & Hughes, 
1998; Guilloy-Froget et al., 2002). During favourable 
years, Black poplar seedlings generally establish in 

very high density (e.g., > 4000/m²; Braatne, 1996) 
at the immediate margins of the main or secondary 
channels. Suitably positioned seedlings on alluvial 
bars near the channels generally form elongated re-
cruitment bands or patches composed of individuals 
of the same age (cohort) (Guilloy-Froget et al., 2002; 
Corenblit et al., 2009; 2016). As a pioneer species, the 
eco-hydrological conditions for regeneration include 
freshly disturbed, competitor-free sediments and it 
is highly dependent on water table level fluctuations 
(Mahoney & Rood, 1998; Corenblit et al., 2014).  
Harsh summer (drought) and winter (submersion, 
erosion and/or burial) conditions on alluvial bars 
allow seedlings to establish only during restricted 
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time periods and years (Barsoum & Hughes, 1998; 
Mahoney & Rood, 1998; Stella & Battles, 2010; Guil-
loy et al., 2011). The relatively long period of seed 
production of Black poplar (2-3 months according to 
Braatne, 1996; Guilloy-Froget et al., 2002) combined 
to the variability of dispersal conditions (i.e., wind 
and hydrological regimes, location and number of 
father- and mother-trees, geomorphological config-
uration) may lead to strong intra- and inter-annual 
variability in seedling relatedness on the colonization 
sites. Patterns of dispersal of pollen and seeds have 
important consequences for the spatial distribution 
of genotypes at the colonisation stage (Banks et al., 
2013).

The spatial genetic structure (SGS), defined as the 
non-random distribution of genotypes, characteriz-
es the relationship between relatedness of individ-
uals and their physical proximity within population 
(Loiselle et al., 1995; Hardy, 2003). The presence 
of a significant SGS may be the result of historical 
founding events and/or population expansion, selec-
tion pressures and, limited or structured gene dis-
persal (Vekemans & Hardy, 2004). In pioneer tree 
species, investigating the SGS helps improve our un-
derstanding of dispersal and colonisation patterns, 
and the subsequent development of the woodland 
ecosystems they inhabit (Jones et al., 2006). More-
over the comparison of SGS between different age 
cohorts  or at different spatial scales allows to make 
inferences about gene flow (pollen and seed disper-
sal) and, therefore, valuable for the conservation 
of threatened species (Gaudeul & Till-Bottraud, 
2008; Batista Leite et al., 2014). Studies of SGS in 
trees generally address large geographic areas; at 
the river reach scale (Imbert & Lefevre, 2003; Jelić 
et al., 2015; Kettenring et al., 2019; González-Ro-
bles et al., 2020) or from kilometres (Pospíšková 
& Šálková, 2006; Born et al., 2008; Wójkiewicz et 
al., 2019) to hundreds of meter (Rathmacher et al., 
2010; Sagnard et al., 2011; Deng et al., 2020). How-
ever, sampling often neglects the very fine scale, at 
less than a meter. Hereafter, we will use “fine-scale 
spatial genetic structure” (FSGS) to refer to scale 
of a meter or less which correspond to the distance 
at which individuals interact with each other (i.e., 
including the zone of interaction among immediate 
neighbours at fine spatial scales as defined by Fajar-
do et al., 2016). FSGS has been studied in trees in an 
agricultural setting (Baldauf et al., 2014; Sjölund et 
al., 2015; Ramos et al., 2016), and also in woodland 
environments (Till-Bottraud et al., 2012; Bessega et 
al., 2016; Fajardo et al., 2016; Kitamura et al., 2018), 
but to our knowledge, very few have explored FSGS 
of Black poplar within river corridors (Mazal et al., 
2021).

In a previous study we described the FSGS of three 
cohorts (5, 10 and > 20 years old individuals) in the 

Allier and the Garonne rivers and found a significant 
FSGS for the young cohort (5 years old individuals) 
but not in older cohorts (Mazal et al., 2021). How-
ever, we did not investigate the FSGS for seedlings 
of the year, which are the most informative about 
seed dispersal. Investigating the evolution of FSGS 
in populations across different developmental stages 
can provide a better understanding of their local pat-
terns of dispersal and colonization and could provide 
valuable information on Black poplar’s ability to col-
onize alluvial bars within the fluvial corridor. Follow-
ing our previous results, we hypothesised that dur-
ing dispersion seeds may get aggregated into clumps 
of related seeds and form micro-patches of related 
seedlings on the alluvial surfaces, resulting in FSGS 
for the seedlings of the year. The goal of this paper 
was to study the FSGS in cohorts of seedlings in the 
same natural population studied previously in order 
to improve our understanding of seed dispersal and 
spatial genetic structuration during recruitment. We 
used microsatellite markers to explore the FSGS of 
four different patches of black poplar seedlings from 
two riverbanks distant by at most 1.2 km in a natural 
reserve of the Allier River (France) and discussed our 
previous results obtained in 2017 on older cohorts 
from the same population (Mazal et al., 2021) in the 
light of these results.

Material and Methods
Study site and sampling strategy

The study site is located along the lower reaches 
of the Allier River in the Val d’Allier National Nat-
ural Reserve, near Châtel-de-Neuvre (46°25’06.5”N, 
003°19’43.2”E; 220 m a.s.l.) in central France. This 
site is the same as described and studied in Mazal et 
al. (2021). The area benefits from a certain degree of 
protection and has experienced moderate anthropo-
genic impacts (e.g., few bank protections or rip rap) 
(Petit, 2006; Dejaifve & Esquirol, 2011). This reach 
of the Allier River is characterized by active lateral 
erosion on the outer bends of meanders, with point 
bar formation and migration on the inner bends 
within the Réserve Naturelle Nationale du Val d’Al-
lier (Garófano-Gómez et al., 2017). The progressive 

Table 1. Summary of the characteristics of the four patches 
sampled for P. nigra seedlings along the Allier River.

Patch Patch area 
(m²)

Number of individuals 
sampled

Density 
(ind /m²)

A 1 90 90
B 0.3 93 310
C 2 93 47
D 1.04 92 89

Mean 1.09 92 134
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Fig. 1. Aerial photograph of the Allier River study site, showing the position of the Black poplar patches (A, B, C and D) 
sampled along the two gravel bars. River flow direction is from South to North. In the four patches, the white vials 
(6 cm high) are positioned next to each sampled individual
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shifting of the river channel allows for periodic re-
cruitment events on many germination sites on allu-
vial bars, resulting in different aged cohorts of P. nigra 
recruits growing in elongated bands parallel to the 
main channel (Hortobágyi et al., 2017).

In August 2019, we sampled seedlings of 1 year 
old in four patches on two alluvial bars. We chose two 
patches of seedlings in each bar and collected approx-
imately 90 individuals in each patch (Table 1, Fig. 1). 
Density was very high in the four patches (mean den-
sity = 133±59.61 individuals/m²) and the patches 
sampled were relatively small (1 m²). Patches were 
distant by at most 1.2 km. Table 1 lists the number 
of black poplar seedlings, patch area, and patch plant 
density. For each patch, we built a distance matrix 
between each pair of individuals at a centimetre scale 
using pictures on which we digitized the location of 
each individual (ArcGis™ v.12.4). The studied patch-
es were located in similar conditions, including the 
proximity and elevation relative to the channel. Nu-
merous adult trees are present close to our studied 
site. A few km downstream from our site, Wendel-
gaß (2016) found approximately 130 adult trees (> 
20 years-old, based on tree-ring counts) out of 330 
measured over an area of 11,500 m². This indicate 
that more than 20,000 adult trees are present in the 
Reserve.

DNA extraction and genotyping

Total DNA was extracted from leaves using the 
NucleoSpin 96 Plant Core Kit extraction kit (Mache-
rey Nagel™) according to the manufacturer instruc-
tions. We used 12 unlinked (Gaudet et al., 2007) 
nuclear microsatellites markers to genotype individ-
uals (see details in Table S1): WPMS06, WPMS07, 
WPMS09, WPMS13, WPMS14, WPMS16, WPMS20, 
WPMS22 PMGC93, PMGC2578, PMGC14, and 
ORPM221 (Smulders et al., 2002; Van Oosterhout 
et al., 2004; Chenault et al., 2011; Faivre-Ram-
pant et al., 2016). Markers were arranged in three 
PCR-multiplex reactions. Multiplex1: ORPM221, 
WPMS07, WPMS13, WPMS22; Multiplex2: 
PMGC14, PMGC93, PMGC578, WPMS14; Multi-
plex 3: WPMS06, WPMS09, WPMS16, WPMS20. 
We used indirect tagging with M13-tailed primer 
method (Oettings et al., 1995). In this method, in-
stead of synthesizing one specific fluorescently la-
belled primer for each SSR marker, only a dye la-
belled M13 primer is needed. Marker amplification 
was performed according to Mazal et al. (2021). 
Analysis of The PCR products were performed in 
a 3750xl Genetic Analyser (Applied Biosystems™) 
with GeneScanTM 500 LIZ® internal size standard. 
Genotypes were scored using Geneious™ v.2020.1.1. 
and confirmed manually.

Genetic analyses

Three markers did not amplify (WPMS06, 
WPMS07, WPMS22) and were removed from the 
analysis. Loci were tested for null allele frequencies 
with Brookfield’s methods (Brookfield, 1996) using 
Microchecker v2.2.3 (Van Oosterhout et al., 2004)
low DNA concentrations and primer-site mutations 
may result in the incorrect assignment of microsatel-
lite genotypes, potentially biasing population genetic 
analyses. MICRO-CHECKER is WINDOWS®-based 
software that tests the genotyping of microsatellites 
from diploid populations. The program aids identifi-
cation of genotyping errors due to nonamplified al-
leles (null alleles. Three markers (PMGC14, WPMS09 
and WPMS16) presented a high null-allele frequency 
and were therefore removed from the dataset. To es-
timate the discrimination power of the dataset, we 
calculated the probability of sampling two different 
genotypes with the same multilocus SSR phenotype 
(probability of identity) with one to six markers us-
ing GenAIEx v6.5 (Peakall & Smouse, 2012). This 
probability decreased from 2.9e−02 with one marker, 
and reached a plateau around 7.5e−07 with four mark-
ers suggesting a high discrimination power of our six 
markers combination.

We estimated allele frequencies, total and effec-
tive number of alleles, expected and observed hete-
rozygosities and inbreeding coefficient using SPAGe-
Di 1.5 (Hardy & Vekemans, 2002). Genetic structure 
was analysed using the STRUCTURE 2.3.4 (Pritchard 
et al., 2000) with  a burn-in period of 100,000 it-
erations followed by 200,000 additional MCMC it-
erations. The analysis was based on the admixture 
model and uncorrelated allele frequencies with the 
recessive alleles option. Twenty independent runs for 
each number of groups (K), ranging from 1 to 5 were 
used. The best number K was estimated and visual-
ly verified as the highest value of Ln(P) following 
Puechmaille (2016) because the ΔK method does not 
evaluate K=1 causing an overestimation (Evanno et 
al., 2005).

Spatial genetic structure and relatedness

We checked for the absence of clonality using the 
GenAIEx (Peakall & Smouse, 2012). FSGS was as-
sessed within patches using the SPAGeDi. Loiselle 
multilocus kinship coefficients, Rij (Loiselle et al., 
1995), were calculated between each pair of individ-
uals. Because Rij is a kinship coefficient relative to the 
population mean, negative values can result, mean-
ing that two individuals are less related on average 
than randomly selected individuals from the popu-
lation (Hardy, 2003). Kinship coefficient values were 
averaged within distance classes (d), giving F(d) and 
plotted against geographical distances. Ten distance 
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classes were defined manually. Significance of F(d) 
for each distance class was tested by running permu-
tations of the spatial position of individuals 10,000 
times, yielding a 95% confidence interval for F(d) for 
each distance class. To test for SGS, we tested the sig-
nificance of the regression of Rij values on the spatial 
distance (d) (Vekmans & Hardy, 2004). The spatial 
positions of the individuals were permuted 10 000 
times in order to get the frequency distribution of the 
slope under the null hypothesis that Rij and d were 
uncorrelated (Hardy 2003).

To determine whether patches originated from 
different groups of related seeds, we tested if kinship 
coefficients (Rij) between individuals from the same 
patch were higher than between individuals from 
different patches. Pairwise Rij are not independent 
when individuals are related to each other within 
patches. Consequently, we sampled randomly all 
independent Rij’s within patches and we compared 
the Rij distributions (within and among patches) 
with a Wilcoxon rank test. We repeated this proce-
dure 9,999 times. Because of multiple comparison 
tests, we corrected the p-values of the different tests 
with the Benjamini–Hochberg method (Benjamini & 
Hochberg, 1995). To test the significance of the com-
parisons, we used the average corrected p-value and 
the percentage of tests passing the significance level 
(α = 0.05) after correction.

Results
Genetic structure

As expected for seedlings, we found no identi-
cal multilocus genotypes in different samples in our 
dataset. The multilocus inbreeding coefficient was 
low (Fis = 0.007) and does not show deviation from 
Hardy-Weinberg equilibrium (p-value = 0.441) in-
dicating no population sub-structure. The absence 
of population subdivision was confirmed by the 
STRUCTURE analysis that indicates K=1 as an opti-
mal genetic cluster (Fig. S1). Moreover, all pairwise 
comparisons between patches showed low and not 
statistically significant values of genetic differentia-
tion (FST ranging from 0 to 0.007; Table S2).

Table 2. Population genetic parameters (multilocus) for each patch sampled. N = number of individuals; Na = total num-
ber of alleles; Nae = effective number of alleles (Nielsen et al., 2003); He and Ho = expected and observed heterozy-
gosities, respectively; Fis = inbreeding coefficient; P (Fis ≠ 0) = the p-value of the permutation test

Patch N Na Nae He Ho Fis P (Fi ≠ 0)
A 390 12.00 5.83 0.805 0.807 −0.002 0.956
B 393 13.50 5.84 0.808 0.828 −0.024 0.175
C 393 12.50 7.05 0.854 0.827 −0.032 0.084
D 392 12.33 6.39 0.822 0.837 −0.018 0.341
All 368 15.33 6.37 0.822 0.816 −0.007 0.441

Fig. 2. Spatial autocorrelation plots for the four patches 
(A, B, C and D). The average kinship coefficient F(d) 
is plotted against geographical distance between indi-
viduals. Confidence intervals (95%) are indicated by 
dashed lines. All values within the confidence interval 
are not significantly different from 0 (α = 0.05)
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We found a high genetic diversity for the whole 
population (He = 0.822; Table S3) and in each patch 
(Table 2). Moreover, these value of genetic diversity 
were similar to the ones we found in our previous 
study (He = 0.859 and Ho = 0.850 Mazal et al., 2021).

Regressions between Rij values and the spatial 
distance were never significant, indicating no spatial 
genetic structure in any of the four sampled patch-
es along the 1.2 km river reach (Fig.  2). Kinship 
coefficient (Rij) between pairs of seedlings ranged 
between –0.31 and 0.55, indicating that some full-
sibs are present in the sample (within and among 
patches in the same alluvial bar). However, when 
sampling randomly all independent pairwise related-
ness coefficients Rijs within patches, we found no dif-
ferences between intra-patch and inter-patch mean 
Rij (mean intra = 0.00419±0.00104 SE; mean inter 
= −0.00265±0.00102  SE; average = 0.472; aver-
age corrected = 0.907). Only 0.06% of our p-values 
where inferior to the 0.05 threshold (Fig. S2), further 
confirming the absence of genetic structure over our 
sampling area.

Discussion

We found a high level of genetic diversity for the 
studied population (for comparison with other pub-
lished data on Black poplar, see Mazal et al (2021). 
Furthermore, the level of genetic diversity detected 
for the seedlings in this study is similar to the one 
found in the later life stages of the same population 
(Mazal et al., 2021). Similar level of genetic diversity 
between different life stages were also reported by 
Wójkiewicz et al. (2019). The authors proposed that 
the maintenance of high genetic variation through 
the generations is essential for long term stability of 
populations maintaining a balance between genetic 
drift and mutation. The high genetic diversity found 
here confirms that in the current state, the hydrogeo-
morphological and ecological conditions in the study 
reach of the Allier River are suitable for the preser-
vation of the genetic resources of the Black poplar.

We did not detect any significant FSGS for the 
four patches of the one-year-old seedlings we stud-
ied in the Allier River, and also genetic structure 
across the patches. The results indicate that primary 
seed dispersal did not create an initial FSGS pattern 
during recruitment in 2019. In plants in general, 
the dispersal curves show a maximum of seed dis-
persal relatively close to the source (Nathan, 2006; 
Nathan et al., 2008). Black poplar seeds are gen-
erally deposited within only a few hundred meters 
of the mother tree (Braatne, 1996). In a previous 
study, we found a significant FSGS in five-year-old 
cohorts, but not for older cohorts in both the Allier 
and Garonne Rivers (Mazal et al., 2021). Following 

the idea of a short-distance dispersion, and our pre-
vious results, we proposed that across short disper-
sal distances seeds from different mother trees were 
not homogeneously dispersed and could lead to an 
initial FSGS pattern after germination. The present 
study does not verify this hypothesis. Moreover, the 
studied population is located in a natural reserve that 
experiences moderate anthropogenic impacts and 
no barrier to gene flow were identified (Petit, 2006; 
Dejaifve & Esquirol, 2011). Mature trees are abun-
dant in this reserve. Thus, the absence of FSGS we 
observed, indicated that seeds from numerous and 
different parent trees (both mothers and fathers) are 
widely dispersed by wind and water and are deposit-
ed homogeneously on the various germination sites 
available along a few kilometres. This result shows 
that when reproductive trees are in high density in a 
river reach, the diverse genotypes spatially cover the 
whole span of local habitat variability thanks to an ef-
ficient mixing of seeds during dispersal only over few 
km. Such phenomena may lead to an improved ca-
pacity of the population to reach each year a suitable 
recruitment window in a highly variable and shifting 
mosaic of habitat conditions. Our results however 
suggest that seeds from one mother tree can disperse 
at relatively short distances as evidenced by the fact 
that some pairs of highly related individuals (high 
Rij values) were found in the same patches and by 
the FSGS found in the five-year-old cohort (Mazal et 
al., 2021). All together, these observations could in-
dicate multiple pathways of seed dispersal resulting 
in patches with or without FSGS at the recruitment 
stage. The interannual variability of the hydrologi-
cal regime combined with the possibility for P. nigra 
seeds to disperse by wind and/or water would ex-
plain the proposed pattern of seed dispersal.

FSGS was found in young cohorts of Black poplars 
(five-years old) in the Allier and the Garonne rivers 
but not in older cohorts (Mazal et al., 2021). The pre-
vious significant FSGS we observed in the five-years 
old cohorts in the Allier and the Garonne Rivers may 
be the result of a singular group dispersal event, lead-
ing to the formation of patches of related individuals 
(Mazal et al., 2021). The change in FSGS between 
cohorts (i.e. from seedlings to five-years old) could 
also be caused by similar microhabitat requirements 
between related individuals, which could lead to dif-
ferential mortality. Similarly, Berens et al. (2014) 
showed in Prunus africana, that SGS was stronger in 
adults than in late juveniles. The authors propose 
that similar microhabitat requirements between re-
lated individuals, along with spatial heterogeneity in 
abiotic conditions, could allow the survival of related 
individuals in later life stages, resulting in a higher 
SGS in adults stages.

In our previous study, we did not find global ge-
netic structuring (Mazal et al., 2021). Therefore, for 
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the present study, we chose only a limited number 
of patches. In addition, to ensure repeatability of our 
analysis, we chose our patches from two different al-
luvial banks. The results of the present study confirm 
this lack of structure. However, since the individu-
als sampled in this study are not the same as those 
sampled in our previous study, it is not possible to 
establish a direct relationship between the patterns 
of FSGS found in the different aged cohorts in our 
two studies.

Concluding remarks

The present results on FSGS complement those 
of our previous study in which the the seedling stage 
was missing. The absence of FSGS at the seedling 
stage suggests that seed dispersal was homogeneous 
in the sampled natural population. Further studies, 
such as cohort monitoring approach from establish-
ment to the mature stage, would be promising for 
precisely understanding how riparian successions 
unfold and to point to potential factors that would 
explain the changes in FSGS observed between the 
different life stages in the Black poplar. Moreover, 
we chose to study a site located in a natural reserve 
where the flow regime is unregulated, river mor-
phodynamics are only moderately impacted by hu-
man activities and that harbours a large number of 
adult trees. This situation where natural processes 
are largely undisturbed make it suitable for P. nigra 
regeneration. In this site, genetic diversity was high, 
similar to, or even higher than, most data available 
for European rivers. This site is thus a valuable asset 
for the conservation of P. nigra genetic diversity.
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