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A b s t r a c t. Soil organic matter plays a crucial role in soil 
health and represents one of the key functions for determining 
soil suitability for crop production. Recently, intensive agricultu- 
ral production and climatic changes have led to a decline in 
organic matter level in soils. This paper is to provide the most 
accurate spatial predictor using different interpolation methods 
in order to evaluate in detail the status of organic matter in agri-
cultural soils in the Osijek-Baranja County, Croatia. We applied 
three different interpolation methods, including inverse distance 
weighting, ordinary kriging and empirical Bayesian kriging. 
A total number of 9099 soil samples from 0-30 cm layer were 
compiled and analysed in the laboratory. The average value of 
soil organic matter in the study area was 2.66% with moderate 
variability (CV = 30.62%). The best fit variogram model is expo-
nential in the direction of 20 and its spatial variability indicates 
that soil organic matter varies widely under pedogenetic and soil 
management practices.  Empirical Bayesian kriging method was 
the most precise (RMSE = 0.457), followed by ordinary kriging 
(RMSE = 0.466) and inverse distance weighting (RMSE = 0.476). 
The investigated area shows a heterogeneous spatial pattern of 
soil organic matter content, with levels below 3% found mostly in 
western and south-western parts of county. 

K e y w o r d s: geostatistics, soil organic matter, kriging, inter-
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INTRODUCTION

The soil represents a crucial irreplaceable resource for 
food production (Rojas et al., 2016). Growing population, 
together with pronounced climate changes put a consider-
able pressure on agricultural land (FAO and ITPS, 2015). 
Furthermore, intensive agricultural production (e.g. annual 
ploughing and use of agrochemicals) leads to soil degrada-

tion, decreasing its suitability for crop production (Liu et 
al., 2010, 2006; FAO and ITPS, 2015). The key function 
in relation to soil degradation and soil fertility is played 
by soil organic matter (SOM) content (Gajda et al., 2016; 
Lehmann and Kleber, 2015; Vázquez et al., 2016). The 
basic benefits of SOM can be divided into three catego-
ries – physical (increases aggregate stability and soil water 
capacity, and decreases crusting), chemical (increases cat-
ion exchange capacity of soil and availability of essential 
soil nutrients) and biological (provides habitat and food for 
many living organisms in soil, increases microbiological 
diversity and expands soil food webs) (Bot and Benites, 
2005). Furthermore, SOM represents the most important 
sink of carbon and plays a crucial role in carbon sequestra-
tion, mitigating climate change effects (Milne et al., 2007; 
Whitmore et al., 2015). The continuing decline of organic 
matter from soils in agroecosystems due to unappropriated 
agricultural (incineration and removal of crop residues, 
overgrazing, inappropriate tillage, etc.) and environmen-
tal conditions (rising temperature or heat wave events, 
frequent floods, erosion, etc.) is the main problem for soil 
preservation (Jug et al., 2018; Farquharson et al., 2003; 
Liu et al., 2006; Loveland and Webb, 2003). Therefore, 
it is very important to exert permanent control over SOM 
content in soils within agricultural land (Bot and Benites, 
2005). Procedures which would facilitate the analysis of 
the researched area together with an accurate visualization 
of SOM by geostatistical methods are still unexplored in 
Croatia. The existence of proper input data enables us to 
predict the status of unsampled areas and to understand 
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problems in agricultural production (Krivoruchko, 2012; 
Lipiec and Usowicz, 2018; Mirzaei and Sakizadeh, 2016; 
Robinson and Metternicht 2006; Schueller, 2010). At the 
regional or national levels, the precise monitoring of SOM 
could be a labour-intensive, time-consuming and expensive 
measure, but today’s technologies (e.g. GIS, geostatistics) 
make it possible to monitor spatio-temporal changes of 
all chemical properties of soil at various levels. There are 
many scientific papers that are dealing with spatial predic-
tion of SOM content and predictions in those papers are 
made at different levels, namely field (Mabit and Bernard, 
2010), regional (Dai et al., 2014) and country/continental 
(Jones et al., 2005). When it comes to the methods used 
for spatial analyses of SOM, the most frequently used are 
the deterministic methods, such us inverse distance weight-
ing (IDW) and Splines that do not take into consideration 
the spatial autocorrelation of data, and they are followed 
by stochastic geostatistical methods that take into account 
an estimation of every variable at each point through the 
selected model, like ordinary kriging (OK) (Mabit and 
Bernard, 2010; Marchetti et al., 2012; Robinson and 
Metternicht, 2006). Not long ago, empirical Bayesian 
kriging (EBK) has become an interesting alternative for 
mapping soil properties. Unlike classic kringing methods, 
it automatically estimates and, by using a distribution of 
semivariogram models instead of just one model, calculates 
unsampled locations compiled into an image representing 
a specific area. For example, OK uses only one semivario- 
gram model for calculation and its accuracy significant-
ly depends on the analyst’s skills (Krivoruchko, 2012; 
Mirzaei and Sakizadeh, 2016). An approach with multiple 
simulated variograms could increase their reliability, when 
their parameters are used for kringing (Fabijańczyk et al., 
2017). Several other studies showed an increased mapping 
precision by EBK (e.g. Adhikary et al., 2011; Fabijańczyk 

et al., 2017). Considering the mentioned importance of 
SOM content, this study tests a new interpolation method to 
1) describe the spatial variability of SOM, 2) compare and 
choose the most suitable method for SOM spatial predic-
tion, 3) create a map by using geostatistical and GIS tools 
to detect areas with depleted SOM content status.

MATERIAL AND METHODS

The research was conducted in the Osijek-Baranja 
County (4152 km2), Eastern Croatia. The Osijek-Baranja 
County is settled in lowlands and hilly parts of Eastern 
Croatia. (Bašić et al., 2007). The temperatures in the re- 
searched area increase from west towards the east, and from 
northwest to northeast and they are dependent on the influ-
ence of the sea. The mean annual temperature is 10°C. 
Mean monthly temperature ranges from -1 to 21°C, with the 
coldest period in January when the minimum temperature 
may reach -25°C or lower. On the other hand, the warmest 
period is in July and August when maximum temperature 
exceeds 40°C. Precipitation in the research area increas-
es inversely to air temperature. The mean annual rainfall 
varies from east (609 mm) to west (792 mm). The main 
soils types of the Osijek-Baranja County, found in about 
85% of the area, are: Gleysols (28.8%), Luvisol (25.9%), 
Stagnosols (14.9%), Fulvisols (7.4%), Chernozem (6.0%), 
and Cambisols (1.8%) (Bogunović et al., 1996). 

9099 soil samples, with associated latitude and lon-
gitude, were compiled for the study area (Fig. 1). Soil 
samples were collected with an agrochemical and hydrau-
lic automatic probe. One composite sample consisted of 25 
cores collected within a 15 m radius of the main sample 
point with the sample recovery depth of 30 cm. Soil sam-
ples were taken after the harvest, before application of any 
kind of fertilization and prior to soil preparation for new 
crops (Đurđević, 2014).

Fig. 1. Study area map including the distribution of sampling points in the Osijek-Baranja County.
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Soil samples were stored in plastic bags, homogenized, 
dried, milled and analysed in the laboratory according 
to the modified Walkley-Black method (Nelson and 
Sommer, 1982). Calculation of SOM was made under the 
assumption that the organic matter contained 50% of car-
bon (Pribyl, 2010). 

Descriptive statistics, with arithmetic mean, standard 
deviation (SD), minimum (min), maximum (max), coeffi-
cient of variation (CV), kurtosis (kur) and skewness (skew) 
were computed for SOM on the assumption that the data 
were spatially independent. The descriptive parameters 
were calculated by Microsoft Excel for Windows. Prior to 
data analysis, SOM dataset was checked for normality using 
Kolmogorov-Smirnov test. Data normality is desirable for 
the correct interpretation of spatial interpolation, because 
it may have some implications for geostatistical analysis 
(Kerry and Oliver, 2007). If SOM dataset did not follow 
normal distribution (p < 0.05) it was subjected to loga-
rithm and Box-Cox transformations (Box and Cox, 1964; 
Osborne, 2010). If the transformed dataset did not achieve 
normality after performed transformations, the criterion for 
choosing the best method was normalized skewness in ran- 
ge of values between -0.5 and 0.5 (Bogunovic et al., 2017a).

Spatial analysis of SOM was conducted by spatial tools 
such as classed post maps, directional variograms and vari-
ogram maps (Fotheringham and Rogerson, 2013; Hengl et 
al., 2004; Webster and Oliver, 2001). After studying the 
datasets searching for extremes, outliers, local errors and 
spatial non-stationarity, the following procedure had to be 
observed: the spatial correlation of SOM with experimen-
tal variogram modelling in ArcGIS software (ESRI, 2011). 
Based on to the present sampling geometry and distances 
between the samples, semivariance was calculated using 12 
lags and a maximum lag distance of 200 m related to the 
average spacing of the data.

Semivariograms were checked for anisotropy to calcu-
late the directional semivariograms. According to previous 
works, 150 samples were required for a reliable identifi-
cation with regard to the presence of anisotropy (Webster 
and Oliver, 2001). The spatial dependence of variables 
was assessed using the nugget effect and nugget/sill 
ratio. A ratio < 25% shows a strong dependence, 25-75% 
a moderate dependence, and > 75% a weak dependence 
(Cambardella et al., 1994). The analysis of classed posts 
map and variogram detects the presence of trends. Best fit 
variogram model was selected on the basis of visual assess-
ment, lowest nugget effect, nugget/sill ratio and longest 
range of spatial autocorrelation. Any uncertainties between 
two or more similar models were resolved by choosing the 
variogram with the lowest root mean square error (RMSE) 
during cross-validation procedure.

In order to test and analyse spatial variability and pro-
vide the most accurate map of SOM, three interpolation 
methods were used: inverse distance weighting (IDW), 
ordinary kriging (OK) and empirical Bayesian kriging 
(EBK). Inverse distance weighting prediction is a deter-

ministic, nonlinear interpolation technique, which on the 
basis of the average known values of neighbouring points 
calculates prediction of unsampled location (Xie et al., 
2011, Eq. (1)): 

(1)

where: Z(ᵡ) is an estimated value for a particular point, Z 
represents known point value, and r is weight, which is 
associated with the distance between the estimated and the 
data points dij. 

Ordinary kriging (OK) uses a weighted average of 
known neighbouring values, which depends on the distance 
between them, their grouping and their values, to estimate 
the unsampled location. OK is similar to IDW and it aims 
to estimate the value of random function z for one or more 
unsampled locations (Eq. (2)):

(2)

where: wj are the weights assigned to the known value of 
Z(xj), and z*(xo) is the estimated value (Xie et al., 2011). 

Empirical Bayesian kriging (EBK) assesses the unsam-
pled locations by automatically applying several different 
semivariogram models, unlike OK which uses only one fit-
ted semivariogram model for the entire area. This process 
is divided into three main steps: (1) Semivariogram model 
is estimated on the basis of data. (2) Using the resulting 
semivariogram model, the new values are then simulated 
at the locations of the input data. (3) A new semivariogram 
model is estimated from the simulated data. A weight for 
this semivariogram is then calculated by using Bayes’ rule, 
which shows the probability with which the observed data 
can be generated from the semivariogram. Rules 2 and 3 are 
repeated, and with each repetition the estimated semivario- 
gram in step 1 is used to simulate a new set of values at 
input locations. The simulated data are then used to estimate 
a new semivariogram model and its weight. This process is 
fully automated and allows the creation of spectrum semi-
variograms, which can be used to assess a particular area 
(Krivoruchko, 2012; Mirzaei and Sakizadeh, 2016). 

The assessment of the interpolation methods was car-
ried out using the leave-one-out cross-validation method, 
which estimates the sampling point from the surrounding 
samples. From the errors produced (observed-predicted) 
we calculated the mean error (ME) and the root mean 
square error (RMSE) according to the following formulas:

(3)

(4)

where: z*(xi) is the predicted value, z(xi) the known value, 
and N the number of samples (Robinson and Metternicht, 
2006). The most accurate method is the one with the lowest 
RMSE.
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RESULTS AND DISCUSSION

The mean value of SOM in the study area was 2.66% 
(Table 1), while 70.7% of the analysed soil samples had 
a content of SOM lower than the 3% (Fig. 2) which indi-
cates the presence of agricultural soil degradation (Liu et 
al., 2006) and can lead to a decline in soil quality (Loveland 
and Webb, 2003). The value of CV (30.62%) for SOM in 
the investigated area reveals their moderate variability 
(according to Nielsen and Bouma, 1985). Other studies 
also reported similar findings (e.g. Bogunovic et al., 2017a; 

Jiang et al., 2012). Moderate variability of SOM is the 
result of the topography, climate and soil type, as well as 
land use. The investigated area has different geologic, geo-
morphologic and climatic conditions which impacts on the 
diversity of soil types, while intensive soil management 
increases the spatial heterogeneity of SOM. Hilly areas are 
covered with permanent plantations and intensively tilled 
which accelerates SOM depletion (Paltineanu et al., 2016) 
and losses of SOM through erosion (Bogunovic et al., 
2018). Lowland areas have unequal water regime. Areas 
close to rivers where groundwater is shallow record high 
SOM (Ceddia et al., 2015). Nevertheless, the amelioration 
of these soils for agricultural purposes has an impact on 
the duration of the conditions of pedogenesis and increases 
the heterogeneity of SOM. Frequently flooded soils usu-

ally record higher SOM content compared to soils located 
at higher elevations due to poor decomposition of organic 
material (Eglin et al., 2008).

Soil organic matter data show a non-normal distribution 
by an evident positive skewness (Table 1). Performed loga-
rithmic and Box-Cox transformations reduce CV and shape 
soil parameters, although the transformed datasets did not 
pass Kolmogorov Smirnov test (p < 0.01). However, for 
modelling purposes, we used logarithmic transformed 
SOM data because this was the closest to a normal dis-
tribution following procedure as in previous studies (e.g. 
Bogunovic et al., 2017b; Sharma et al., 2011).

The SOM experimental variogram (Fig. 3) was best-fit 
with the exponential model, which is in agreement with 
previous studies (Bogunovic et al., 2017a; Lipiec and 
Usowicz, 2018; Reza et al., 2016) where the majority of 

Ta b l e  1. Summary statistics for soil organic matter (SOM)

Attributes N Min Max Mean SD Skewness CV % Kurtosis K-S p
SOM 9099 1.02 6.99 2.66 0.91 1.12 30.62 4.19 < 0.05

Log_SOM 9099 -0.06 0.82 0.34 0.14 0.42 41.59 -0.37 < 0.05
BC_SOM 9099 -1.14 -0.15 -0.48 0.15 -0.26 30.52 -0.38 < 0.05

N – number of samples, SD – standard deviation, CV – coefficient of variation, LogSOM – logarithmically transformed SOM, 
BC_SOM – box-cox transformed SOM.

Fig. 2. Levels of soil organic matter content.

Fig. 3. Directional semivariogram model calculated for soil organic matter with log transformed data. Bold line represents the best fit 
model.
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soil properties were best fitted with the exponential model. 
Range of spatial correlation for SOM was high (1892 m) 
in the direction of 20. This range indicates a proper sam-
pling number for mapping of SOM in the investigated area. 
According to Kerry and Oliver (2004), the sample interval 
should be less than half of the variogram range. Our data 
confirmed that the sampling interval was appropriate to 
measure the spatial variability of SOM. Nugget/sill effect 
was 34.27%, indicating moderate spatial dependence. 
According to Cambardella et al. (1994) soil spatial depend-
ence is controlled by intrinsic and extrinsic factors. In the 
present study, according to variogram modelling, SOM 
is highly influenced by human activity (Liu et al., 2014), 
which is also confirmed by quite high nugget effect. The 
presence of nugget indicates a short-range spatial varia- 
bility, probably related to the influence of human activities 
strongly connected with agricultural practices.

The results of the geostatistical techniques tested for 
SOM are shown in Table 2. Among the tested geostatistical 
techniques, the most accurate technique for mapping SOM 
was EBK, while the least accurate was IDW. Considering 
IDW, the most accurate model parameters for SOM asses- 
sment are found to be at weight power of one with 10 neigh-
bouring points included. Modelling with this method reveals 
that an increase in the weight parameter decreases the map-
ping accuracy. Kriging estimation of unsampled locations 
depends highly on variogram modelling performance. 

An optimal geostatistical method should have a mini-
mum cross-validation error, which depends mostly on the 
number and distribution of the samples and their distance 
from one another (Mirzaei and Sakizadeh, 2016). The low-
est RMSE was recorded for EBK. Hence, the mean error 
(ME) which is very close to the ideal 0, proves that the 
prediction is relatively unbiased with a small bias. Only 
the IDW method has a considerably higher ME and conse-
quently stronger bias. 

In general, the IDW method is simpler and there are 
not so many different possibilities regarding the selection 
of the model parameters, unlike OK that needs more skill or 
perhaps more artistic approach (Gong et al., 2014), because 
semivariance function fitting process is very subjective (Xie 
et al., 2011). Of course, OK has already proven to be one of 
the best methods for estimation, especially when it comes 

to the prediction of soil chemical properties (Bogunovic et 
al., 2014). The main advantage of EBK is that the process 
of creating a valid kriging model is automated so manual 
parameter adjustment is eliminated (Krivoruchko, 2012). 
In addition, EBK takes into account uncertainties related 
to variogram plotting, simulating variograms for different 
parts of the analysed area, and creating separate subpopula-
tions of data. This plays an important role when parts of 
the analysed area are affected by different factors (differ-
ent soil management, fertilizer rates, tillage systems, etc.) 
(Samsonova et al., 2017). Finally, the advantage of EBK 
in comparison to other models has already been reported 
during mapping soil contamination (Adhikary et al., 2011), 
water contamination (Fabijańczyk et al., 2017), and map-
ping of forest soil properties (Beguin et al., 2017).  

Final maps of SOM are presented in Fig. 4. The are-
as of low SOM values lower than 3.0% can be identified 
mainly in western and south-western parts of the Osijek-
Baranja County, which mostly has very acid soil reaction 
(predominantly Stagnosols) with only several neutral zones 
(Luvisol) (Đurđević et al., 2011) (Fig. 4c). Furthermore, 
a vast majority of these soils (90%) are generally tilled 
conventionally (deep mouldboard ploughing) (Jug et al., 
2007), with insufficient care about the incorporation of 
crop residues (Jug et al., 2011). In addition, a large part 
of crop residues is used for the production of biofuels 
and other biomass energy (Bilandzija et al., 2018), which 
is a good precondition for losing large amounts of SOM. 
The described open cycle system can have a significant 
impact on SOM concentration that results in a decrease in 
SOM. This has been confirmed by many studies for vario- 
us agroecosystems (Mann et al., 2002; Kravchenko et al., 
2016; Busari et al., 2015; Durán Zuazo et al., 2014; Bot 
and Benites, 2005). The only exceptions are the north and 
south-eastern areas which mostly have neutral soil reaction 
and they belong to the county areas which, according to 
Đurđević et al. (2011) and Vukadinović et al., (2014), are 
more suitable for agricultural production (predominantly 
Gleysols, Chernozem and Luvisol) (Fig. 4c). But agricul-
tural practice in the research area is mostly intensive with 
predominant use of mineral fertilizers, while farmyard 
manure is mostly spread in close vicinity of a few larger 
farms. Consequently, one could easily speculate that in 
the near future a similar situation with a decrease in SOM 
concentrations will also affect areas with more than 3% of 
SOM. In this context, it is necessary to highlight the great 
importance of preserving and raising SOM content through 
good agricultural practices, use of conservation soil man-
agement with well-planned crop rotation and optimal 
fertilization recommendations (mineral and organic) based 
on expert knowledge (Bot and Benites, 2005; Shrestha et 
al., 2015).

Ta b l e  2. Efficiencies and errors of the interpolation methods 
(summary)

Method Neighbours ME RMSE

EBK 20 0.003 0.457

OK 5 0.001 0.466

IDW 10 0.011 0.476

IDW – inverse distance weighting, OK – ordinary kriging, EBK 
– empirical Bayesian kriging, ME – mean error, RMSE – the root 
mean squared error.
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Fig. 4. Spatial distribution maps of soil organic matter (SOM %) content calculated with a) IDW, b) OK, and c) EBK.



SPATIAL VARIABILITY OF SOIL ORGANIC MATTER 37

CONCLUSIONS

1. The investigated soils had low soil organic matter 
concentration indicating possible future treats in the form 
of land degradation. 

2. The best fit model for soil organic matter is the expo-
nential one. The spatial dependence was moderate and the 
range was high, revealing that soil organic matter varied 
widely under the pedogenetic and soil management prac-
tices, indicating a strong human influence.

3. The most accurate interpolation method was empiri-
cal Bayesian kriging, while inverse distance weighting 
was the least accurate. The map of SOM indicates low le- 
vels (< 3%) in the western and south-western parts of the 
investigated area. Heterogeneous spatial patterns of soil 
organic matter suggest that site-specific soil management 
strategies should be implemented. 

4. This kind of approach to problem solving in agricul-
ture can be applied for various agroecological conditions 
and can significantly facilitate or accelerate the decision-
making process, and thus directly affect the profitability 
and sustainability of agricultural production. 

Conflict of interest: The Authors do not declare any 
conflict of interest.
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