PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 78 | 3 |

Tytuł artykułu

Effects of PINK1 mutation on synapses and behavior in the brain of Drosophila melanogaster

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Mutations in the PINK1 gene are responsible for typical symptoms of Parkinson’s disease. Using Drosophila melanogaster mutant PINK1B9 and after PINK1 silencing with RNAi using transgenic lines, we observed defects in synapses and behavior. The lack or reduced expression of PINK1 prolonged sleep during the day (nap) and decreased the total locomotor activity during 24 h, in addition to a decrease in climbing ability and a reduced lifespan. In the brain, PINK1 mutants had a lower level of Bruchpilot (BRP), a presynaptic scaffolding protein that is crucial for neurotransmission in all type of synapses in Drosophila. In addition, other proteins that are involved in synaptic transmission; Rab5, Syntaxin and Wishful Thinking were also decreased in abundance in mutants, except Synaptotagmin. Transmission electron microscopy (TEM) also confirmed less and abnormal synaptic vesicles at tetrad synapses in the visual system of PINK1 mutants. The lower level of BRP and longer day sleep observed was also detected in white mutants, which were examined to test the effect of the white background on the PINK1B9 strain. The reduced locomotor activity and longer day sleep in PINK1 mutants and after decreasing the PINK1 level in neurons seem to be correlated with a decrease in mitochondria number during the day, when they normally peak, and with impaired synaptic transmission.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

78

Numer

3

Opis fizyczny

p.231-241,fig.,ref.

Twórcy

autor
  • Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
  • Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
  • Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
  • Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
autor
  • Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland

Bibliografia

  • Aberle H, Haghighi PA, Fetter RD, McCabe BD, Magalhães TR, Goodman CS (2002) Wishful thinking encodes a BMP Type II receptor that regulates synaptic growth in Drosophila. Neuron 33: 545–558.
  • Ambegaokar SS and Jackson GR (2010) Interaction between eye pigment genes and tau‑induced neurodegeneration in Drosophila melanogaster. Genetics 186: 435–442.
  • Borycz J, Borycz JA, Kubów A, Lloyd V, Meinertzhagen IA (2008) Drosophila ABC transporter mutants white, brown and scarlet altered contents and distribution of biogenic amines in the brain. J Exp Biol 211: 3454–3466.
  • Chen Y and Dorn GW (2013) PINK1‑phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340: 471–475.
  • Chien WL, Lee TR, Hung SY, Kang KH, Wu RM, Lee MJ, Fu WM (2013) In‑ crease of oxidative stress by a novel PINK1 mutation, P209A. Free Radic Biol Med 58: 160–169.
  • Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and inter‑ acts genetically with parkin. Nature 441: 1162–1166.
  • Dawson TM and Dawson VL (2003) Molecular pathways of neurodegener‑ ation in Parkinson’s disease. Science 302: 819–822.
  • Deas E, Plun‑Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ, Whitworth AJ, Martins LM, Abramov AY, Wood NW (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20: 867–879.
  • DiAntonio A, Haghighi AP, Portman SL, Lee JD, Amaranto AM, Goodman CS (2001) Ubiquitination‑dependent mechanisms regulate synaptic growth and function. Nature 412: 449–452.
  • Eiyama A and Okamoto K (2015) PINK1/Parkin‑mediated mitophagy in mammalian cells. Curr Opin Cell Biol 33: 95–101.
  • Ewart GD, Cannell D, Cox GB, Howells AJ (1994) Mutational analysis of the traffic ATPase (ABC) transporters involved in uptake of eye pigment pre‑ cursors in Drosophila melanogaster. Implications for structure‑function relationships. J Biol Chem 269: 10370–10377.
  • Feany MB and Bender WW (2000) A Drosphila model of Parkinson’s dis‑ ease. Nature 404: 394–398.
  • Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Südhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79: 717–727.
  • Górska‑Andrzejak J, Makuch R, Stefan J, Görlich A, Semik D, Pyza E (2013) Circadian expression of the presynaptic active zone protein Bruchpilot in the lamina of Drosophila melanogaster. Dev Neurobiol 73: 14–26.
  • Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS, Fon EA (2012) Mitochondrial processing pepti‑ dase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13: 378–385.
  • Hoop MJ, Huber LA, Stenmark H, Williamson E, Zerial  M, Parton RG, Dotti CG (1994) The involvement of the small GTP‑binding protein Rab5a in neuronal endocytosis. Neuron 13: 11–22.
  • Kittel RJ, Wichmann C, Rasse TM, Fouquet  W, Schmidt  M, Schmid A, Wagh DA, Pawlu C, Kellner RR, illig KI, Hell SW, Buchner E, Heckmann M, Sigrist SJ (2006) Bruchpilot promotes active zone assembly, Ca2+ chan‑ nel clustering, and vesicle release. Science 312: 1051–1054.
  • Krstic D, Boll W, Noll M (2013) Influence of the white locus on the courtship behavior of Drosophila males. PLoS One 8: e77904.
  • Lazarou M, Jin SM, Kane LA, Youle RJ (2012) Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell 22: 320–333.
  • Liu W, Acín‑Peréz R, Geghman KD, Manfredi G, Lu B, Li C (2011) Pink1 reg‑ ulates the oxidative phosphorylation machinery via mitochondrial fis‑ sion. Proc Natl Acad Sci 108: 12920–12924.
  • Li Z, Peng Y, Hufnagel RB, Hu YC, Zhao C, Queme LF, Khuchua Z, Driver AM, Dong F, Lu QR, Lindquist DM, Jankowski MP, Stottmann RW, Kao WWY, Huang T (2017) Loss of SLC25A46 causes neurodegeneration by affect‑ ing mitochondrial dynamics and energy production in mice. Hum Mol Genet 26: 3776–3791.
  • Lu B and Vogel H (2009) Drosophila models of neurodegenerative diseases. Annu Rev Pathol 4: 315–342.
  • Ly CV and Verstreken P (2006) Mitochondria at the synapse. Neuroscientist 12: 291–299.
  • Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura  M, Komatsu  M, Hattori N, Tanaka K (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189: 211–221.
  • Meinertzhagen IA, O’Neil SD (1991) Synaptic organization of columnar ele‑ ments in the lamina of the wild type in Drosophila melanogaster. J Comp Neurol 305: 232–263.
  • Morais VA, Verstreken P, Roethig A, Smet J, Snellinx A, Vanbrabant  M, Haddad D, Frezza C, Mandemakers W, Vogt‑Weisenhorn D, Van Coster R, Wurst W, Scorrano L, De Strooper B (2009) Parkinson’s disease muta‑ tions in PINK1 result in decreased Complex I activity and deficient syn‑ aptic function. EMBO Mol Med 1: 99–111.
  • Ni JQ, Liu LP, Binari R, Hardy R, Shim HS, Cavallaro A, Booker M, Pfeiffer BD, Markstein  M, Wang H, Villalta C, Laverty TR, Perkins LA, Perrimon N (2009) Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182: 1089–1100.
  • Park J, Lee SB, Lee S, Kim Y, Song S, Ki S, Bae E, Kim J, Shong M, Kim JM, Chung J (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441: 1157–1161.
  • Pilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin‑1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17: 2057–2068.
  • Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ (2008) The
  • PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci 105: 1638–1643.
  • Pyza E and Meinertzhagen A (1993) Daily and circadian rhythms of syn‑ aptic frequency in the first visual neuropile of the housefly’s (Musca domestica L.) optic lobe. Proc Biol Sci 254: 97–105.
  • Pyza E and Meinertzhagen IA (1999) Daily rhythmic changes of cell size and shape in the first optic neuropil in Drosophila melanogaster. J Neurobiol 40: 77–88.
  • Rosato E and Kyracou CP (2006) Analysis of locomotor activity rhythms in Drosophila. Nat Protoc 1: 559–568.
  • Savary S, Denizot F, Luciani M, Mattei M, Chimini G (1996) Molecular clon‑ ing of a mammalian ABC transporter homologous to Drosophila white gene. Mamm Genome 7: 673–676.
  • Schraermeyer U and Dhms M (1993) Atypical granules in the eyes of the white mutant of Drosophila melanogaster are lysosome‑related organ‑ elles. Pigment Cell Res 6: 73–84.
  • Shields  M, Bowers MR, Fulcer MM, Bollig MK, Rock PJ, Sutton BR, Vrailas‑Mortimer AD, ller HL, Whittaker RG, Horvath R, Reist NE (2017) Drosophila studies support a role for a presynaptic synaptotagmin muta‑ tion in a human congenital myasthenic syndrome. PLoS One 12: e0184817.
  • Sieber JJ, Willig KI, Heintzmann R, Hell SW, Lang T (2006) The SNARE motif is essential for the formation of syntaxin clusters in the plasma mem‑ brane. Biophys J 90: 2843–2851.
  • Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 10: 513–525.
  • Thomas RE, Andrews LA, Burman JL, Lin WY, Pallanck LJ (2014) PINK1‑Par‑ kin pathway activity is regulated by degradation of PINK1 in the mito‑ chondrial matrix. PLoS Genet 10: e1004279.
  • Ullrich A, Böhme MA, Schöneberg J, Depner H, Sigrist SJ, Noé F (2015) Dynamical organization of Syntaxin‑1A at the presynaptic active zone. PLoS Comput Biol 11: 1–22.
  • Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Dürrbeck H, Buchner S, Dabauvalle MC, Schmidt M, Qin G, Wichmann C, Kittel R, Sig‑ rist SJ, Buchner E (2006) Bruchpilot, a protein with homology to ELKS/ CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49: 833–844. Wang D, Qian  L, Xiong H, Liu J, Neckameyer WS, Oldham S, Xia K, Wang J, Bodmer R, Zhang Z (2006) Antioxidants protect PINK1‑de‑ pendent dopaminergic neurons in Drosophila. Proc Natl Acad Sci 103: 13520–13525.
  • Weber P, Kula‑Eversole E, Pyza E (2009) Circadian control of dendrite mor‑ phology in the visual system of Drosophila melanogaster. PLoS One 4: e4290.
  • Woźnicka O, Görlich A, Sigrist S, Pyza E (2015) BRP‑170 and BRP190 iso‑ forms of Bruchpilot protein differentially contribute to the frequency of synapses and synaptic circadian plasticity in the visual system of Dro‑ sophila. Front Cell Neurosci 9: 1–8.
  • Wucherpfennig Tanja, Wilsch‑Bräuninger Michaela, González‑Gaitán Marcos (2003) Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. J Cell Biol. 161: 609–624.
  • Yamano K and Youle RJ (2013) PINK1 is degraded through the N‑en rule pathway. Autophagy 9: 1758–1769.
  • Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF, Vogel H, Lu B (2006) Mitochondrial pathology and muscle and dopami‑ nergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci 103: 10793–10798.
  • Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci 107: 5018–5023.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-55be4155-2d10-4b66-93d7-4f00ad0e7cb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.