PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 06 |

Tytuł artykułu

Participation of GA3, ethylene, NO and HCN in germination of Amaranthus retroflexus L. seeds with various dormancy levels

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Amaranthus retroflexus seeds were dormant at 25°C in the darkness and in the light, and also at 35°C in the darkness. GA₃ and ethylene partially removed dormancy at 35°C in the darkness and at 25°C in the light. Dormancy was removed by 1–5 days of treatment with nitric oxide or cyanide. The effect of NO and HCN was inhibited by cPTIO, thus the effect of HCN was NO dependent. Dry storage for 16 weeks could partially release dormancy only at 35°C, but not at 25°C. Dry storage increased the response to light, GA₃ and ethylene. The response to GA₃ and ethylene at 25°C was enhanced with increasing storage temperature. GA₃, ethylene and nitric oxide could substitute dry storage and stratification in partially dormant seeds.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

06

Opis fizyczny

p.1463-1472,fig.,ref.

Twórcy

  • Chair of Plant Physiology and Genetic Engineering, Faculty of Biology, University of Szczecin, Waska 13, 71-415 Szczecin, Poland
autor
  • Chair of Plant Physiology and Genetic Engineering, Faculty of Biology, University of Szczecin, Waska 13, 71-415 Szczecin, Poland

Bibliografia

  • Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde islands ecotype, the dormant model of A. thaliana. Planta 219:479–488
  • Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 63:1–19
  • Baskin JM, Baskin CC (1976) High temperature requirement fore after ripening in seeds of the winter annuals. New Phytologist 77:619–624
  • Baskin CC, Baskin JM (2001) Seeds ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego
  • Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12:1103–1115
  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221
  • Bethke PC, Gubler F, Jacobsen JV, Jones RL (2004) Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219:847–855
  • Bethke PC, Libourel IGL, Jones RL (2006a) Nitric oxide reduces seed dormancy in Arabidopsis. J Exp Bot 57:517–526
  • Bethke PC, Libourel IGL, Reinhol V, Jones RL (2006b) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223:805–812
  • Bethke PC, Libourel IGL, Jones RL (2007) Nitric oxide in seed dormancy and germination. In: Bradford KJ, Nonogaki H (eds) Seed development, dormancy and germination, vol 27, Annual Plant Reviews. Blackwell Publishing Ltd, pp 153–175
  • Cadman CSC, Toorop PE, Hilhorst HWM, Finch-Savage WE (2006) Gene expression profiles of Arabidopsis cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46:805–822
  • Calvo AP, Nicolás C, Nicolás G, Rodriguez D (2004) Evidence of a cross-talk regulation a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. Physiol Plant 120:623–630
  • Egley GH (1989) Some effects of nitrite-treated soil upon the sensitivity of buried redroot pigweed (A. retroflexus L.) seeds to ethylene, temperature, light and carbon dioxide. Plant Cell Environ 12:581–588
  • El-Maarouf-Bouteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3:175–182
  • Feelisch M (1998) The use of nitric oxide donors in pharmacological studies. Naunyn-Schmiedeberg’s Arch Pharmacol 358:113–122
  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523
  • Gniazdowska A, Dobrzyńska U, Babańczyk T, Bogatek R (2007) Breaking the apple embryo dormancy by nitric oxide involves the stimulation of ethylene production. Planta 225:1051–1057
  • Gniazdowska A, Krasuska U, Czajkowska K, Bogatek R (2010) Nitric oxide, hydrogen cyanide and ethylene are required in the control of germination and undisturbed development of young apple seedlings. Plant Growth Regul 61:75–84
  • Gubler F, Hughes F, Waterhouse P, Jacobsen J (2008) Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiol 147:886–898
  • Hallet BP, Bewley JD (2002) Membranes and seed dormancy: beyond the anaesthetic hypothesis. Seed Sci Res 12:69–82
  • Hendricks SB, Taylorson RB (1974) Promotion of seed germination by nitrate, nitrite, hydroxylamine, and ammonium salts. Plant Physiol 54:304–309
  • Hilhorst HWM (2007) Definition and hypotheses of seed dormancy. In: Bradford KJ, Nonogaki H (eds) Seed development, dormancy and germination, vol 27, Annual Plant Reviews. Blackwell Publishing, Sheffield, UK, pp 50–71
  • Iglesias-Fernandez R, Matilla A (2009) After-ripening alters the gene expression pattern of oxidases involved in the ethylene and gibberellin pathways during early imbibition of Sisymbrium officinale L. seeds. J Exp Bot 60:1645–1661
  • Karssen CM, Zagórski S, Kępczyński J, Groot SPC (1989) Key role for endogenous gibberellins in the control of seed germination. Ann Bot 63:71–80
  • Kępczyński J, Sznigir P (2013) Response of Amaranthus retroflexus L. seeds to gibberellic acid, ethylene and abscisic acid depending on duration of stratification and burial. Plant Growth Regul 70:15–26
  • Kępczyński J, Van Staden J (2012) Interaction of karrikinolide and ethylene in controlling germination of dormant Avena fatua L. caryopses. Plant Growth Regul 67:185–190
  • Kępczyński J, Rudnicki RM, Khan AA (1977) Ethylene requirement for germination of partly after-ripened apple embryo. Physiol Plant 40:292–295
  • Kępczyński J, Corbineau F, Côme D (1996) Responsiveness of Amaranthus retroflexus seeds to ethephon, 1-aminocyclopropane-1-carboxylic acid and gibberellic acid in relation to temperature and dormancy. Plant Growth Regul 20:259–265
  • Kępczyński J, Bihun M, Kępczyńska E (2003a) The release of secondary dormancy by ethylene in Amaranthus caudatus L. seeds. Seed Sci Res 13:69–74
  • Kępczyński J, Kępczyńska E, Bihun M (2003b) The involvement of ethylene in the release of primary dormancy in Amaranthus retroflexus seeds. Plant Growth Regul 39:57–62
  • Kępczyński J, Cembrowska-Lech D, Van Staden J (2013) Necessity of gibberellin for stimulatory effect of KAR₁ on germination of dormant Avena fatua L. caryopses. Acta Physiol Plant 35:379–387
  • Liu XY, Deng ZJ, Cheng HY, He XH, Song SQ (2011) Nitrite, sodium nitroprusside, potassium ferricyanide and hydrogen peroxide release dormancy of Amaranthus retroflexus seeds in a nitric oxide-dependent manner. Plant Growth Regul 64:155–161
  • Schönbeck MW, Egley GH (1980) Redroot pigweed (Amaranthus retroflexus) seed germination responses to after ripening, temperature, ethylene, and some other environmental factors. Weed Sci 28:543–548
  • Timson I (1965) New methods of recording germination data. Nature 207:216–217
  • Yamaguchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-54c45bf4-5f91-4ce5-a3e7-f6dd336672d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.