PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 94 | 4 |

Tytuł artykułu

In silico prediction and characterization of three-dimensional structure of actin-1 of Arabidopsis thaliana

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Actin-1 is a ubiquitous protein belonging to the reproductive class of Actin family in Arabidopsis thaliana . This protein is involved in the formation of filaments that are major components of the cytoskeleton. Despite the importance of this protein, very little information is available regarding its structure and function in plants. In this study, analysis of the protein sequence was done and comparative model of Actin-1 was constructed (UNIPROT ID: P0CJ46) from Arabidopsis thaliana using the crystal structure of Dictyostelium discoideum actin (PDB ID: 1NLV-A) as template employing Modeller version 9.9. The stable structure was generated by 5 nanosecond molecular dynamics simulation steps using GROMOS43A1 96 force field that characterized its structural and dynamic feature. The biochemical function of the final simulated structure was also investigated using PROFUNC. The molecular simulation study suggested that the modeled Actin-1 protein retain its stable conformation in aqueous solution. The predicted binding sites in the modeled Actin-1 protein are very informative for further protein-ligand interaction study.

Wydawca

-

Rocznik

Tom

94

Numer

4

Opis fizyczny

p.432-443,fig.,ref.

Twórcy

autor
  • Department of Agricultural Biotechnology, Assam Agricultural University, Assam, India
autor
  • Department of Agricultural Biotechnology, Assam Agricultural University, Assam, India
autor
  • Department of Agricultural Biotechnology, Assam Agricultural University, Assam, India
autor
  • Department of Agricultural Biotechnology, Assam Agricultural University, Assam, India
autor
  • Department of Agricultural Biotechnology, Assam Agricultural University, Assam, India
autor
  • Department of Agricultural Biotechnology, Assam Agricultural University, Assam, India
autor
  • Department of Agricultural Biotechnology, Assam Agricultural University, Assam, India
autor
  • Department of Agricultural Biotechnology, Assam Agricultural University, Assam, India
autor
  • Department of Agricultural Biotechnology, Assam Agricultural University, Assam, India

Bibliografia

  • Altshul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215:403-410.
  • Bailey T.L., Elkan C. (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In:Proceedings of the 2nd International Conference on IntelligentSystems for Molecular Biology, Menlo Park, California28: 36.
  • Bermen H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. (2000) The protein data bank. Nucl. Acids Res. 28: 235-242.
  • Chen C.Y., Wong E.I., Vidali L., Estavillo A., Hepler P.K., Wu H.M., Cheung A.Y. (2002) The Regulation of Actin Organization by Actin-Depolymerizing Factor in Elongating Pollen Tubes. Plant Cell 14: 2175-2190.
  • Cheung A.Y., Chen C.Y., Glaven R.H., de Graaf B.H., Vidali L., Hepler P.K., Wu H.M. (2002) Rab2 GTPase Regulates Vesicle Trafficking between the Endoplasmic Reticulum and the Golgi Bodies and Is Important to Pollen Tube Growth. Plant Cell 14: 945-962.
  • Clarke S.R., Staiger C.J., Gibbon B.C., Franklin-Tong V.E. 1998) A potential signaling role for profilin in pollen of Papaverrhoeas. Plant Cell 10: 967-979.
  • Colovos C., Yeates T.O. (1993) Verification of protein structures: atterns of non-bonded atomic interactions. Protein Sci. 2: 1511-1519.
  • Cristobal S., Zemla A., Fischer D., Rychlewski L., Elofsson A. (2001) A study of quality measures for protein threadingmodels. BMC Bioinformatics: 2:5.
  • Dong C.H., Xia G.X., Hong Y., Ramachandran S., Kost B., Chua N.H. (2001) ADF Proteins Are Involved in the Controlof Flowering and Regulate F-Actin Organization, Cell
  • Expansion, and Organ Growth in Arabidopsis. Plant Cell 13: 1333-1346.
  • Eisenberg D., Luthy R., Bowie J.U. (1997) VERIFY3D: Assessment of protein models with three dimensional profiles.Meth. Enzymol. 277: 396-404.
  • Franklin-Tong V.E. (1999) Signaling and the m Fu Y., Li H., Yang Z. (2002) The ROP2 GTPase Controls the Formation of Cortical Fine F-Actin and the Early Phase of Directional Cell Expansion during Arabidopsis Organogenesis.Plant Cell 14: 777-794.
  • Guex N., Peitsch M.C. (1997) SWISS-MODEL and the Swiss- Pdb Viewer: an environment for comparative protein modeling.Electrophoresis 18: 2714-2723.
  • Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. (1997) LINCS: A linear constraint solver for molecular simulations.J. Comput. Chem. 18: 1463-1472.
  • Hess B., Kutzner C., Spoel D., Lindahl E. (2008) GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and ScalableMolecular Simulation. J. Chem. Theory. Comput. 4: 435-447.
  • Hooft R.W.W., Vriend G., Sander C., Abola E.E. (1996) Errors in protein structures. Nature 381: 272-272.
  • Joo K., Lee J., Seo J.H., Lee K., Kim B.G., Lee J. (2008) Allatom chain-building by optimizing MODELLER energyfunction using conformational space annealing. Proteins75: 1010-1023.
  • Kandasamy M.K., McKinney E.C., Meagher R.B. (2002) Functional Non equivalency of Actin Isovariants in Arabidopsis.Mol. Biol. Cell. 13: 251-261.
  • Ko J., Park H., Heo L., Seok C. (2012a) GalaxyWEB server for protein structure prediction and refinement. Nucl. AcidsRes. 40: W294-W297.
  • Ko J., Park H., Seok C. (2012b) GalaxyTBM: template-based modeling by building of reliable core structures and refinementof unreliable local regions. BMC Bioinformatics 13: 198.
  • Krissinel E., Henrick K. (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta. Cryst. D60: 2256-2268.
  • Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. (1993) PROCHECK: A program to check the sterochemicalquality of protein structures. J. Appl. Cryst. 26: 283-291.
  • Laskowski R.A., Watson J.D., Thornton J.M. (2005a) Protein function prediction using local 3D templates. J. Mol. Biol.351: 614-626.
  • Laskowski R.A., Watson J.D., Thornton J.M. (2005b) ProFunc: a server for predicting protein function from 3D structure.Nucl. Acids Res. 33: W89-W93.
  • Li H., Lin Y., Heath R.M., Zhu M.X., Yang Z. (1999) Control of pollen tube tip growth by a RopGTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11: 1731-1742.
  • Li X.B., Fan X.P., Wang X.L., Cai L., Yang W.C. (2005) The Cotton ACTIN1 Gene Is Functionally Expressed in Fibers and Participates in Fiber Elongation. Plant Cell 17: 859-875.
  • Linding R., Jensen L.J., Diella F., Bork P., Gibson T.J., Russell R.B. (2003) Protein disorder prediction; implications for structural proteomics. Structure 11: 1453-1459.
  • Maiti R., Van Domselaar G.H., Zhang H., Wishart D.S. (2004) SuperPose: a simple server for sophisticated structuralsuperposition. Nucl. Acids Res. 32: W590-W594.
  • McDowell J.M., Huang S., McKinney E.C., An Y.Q., Meagher R.B. (1996) Structure and Evolution of the Actin Gene Family in Arabidopsis thaliana. Genetics 142: 587-602.
  • McKinney E.C., Ali N., Traut A., Feldmann K.A., Belostotsky D.A., McDowell J.M., Meagher R.B. (1995) Sequence basedidentification of T-DNA insertion mutations in Arabidopsis:actin mutants act2-1 and act4-1. Plant J. 8: 613-622.
  • Pal D., Suhnel J., Weiss M.S. (2002) New principles of protein structure: nests, eggs – and what next? Angew. Chem. Int. Ed. 41: 4663-4665.
  • Park H., Ko J., Joo K., Lee J., Seok C., Lee J. (2011) Refinement of protein termini in template-based modeling usingconformational space annealing. Proteins: Struct. Funct. Bioinfor. 79: 2725-2734.
  • Park H., Seok C. (2012) Refinement of unreliable local regions in template-based protein models. Proteins: Struct. Funct. Bioinfor. 80: 1974-1986.
  • Pei J., Kim B.H., Grishin N. (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucl. Acids Res. 36: 2295-2300.
  • Porter C.T., Bartlett G.J., Thornton J.M. (2004) The Catalytic Site Atlas: a resource of catalytic sites and residues identifiedin enzymes using structural data. Nucl. Acids Res. 32:D129-D133.
  • Quevillon E., Silventoinen V., Pillai S., Harte N., Mulder N., Apweiler R., Lopez R. (2005) InterProScan: protein domains identifier. Nucl. Acids Res. 1: W116-W120.
  • Sali A., Blundell T.L. (1993a) Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 234: 779-815.
  • Sali A., Matsumoto R., McNeil H.P., Karplus M., Stevens R.L. (1993b) Three-dimensional models of four mouse mastcell chymases, identification of proteoglycan-binding regions and protease-specific antigenic epitops. J. Biol.Chem. 268: 9023-9034.
  • Sali A., Overington J.P. (1994) Derivation of rules for comparative protein modeling from a database of protein structurealignments. Protein Sci. 31: 1582-1596.
  • Sali A., Pottertone L., Yuan F., VlijmenV.H., Karplus M. (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23: 318-326.
  • Scott W.R.P., Hunenberger P.H., Tironi I.G., Mark A.E., Billeter S.R., Fennen J., Torda A.E., Huber T., Kruger P., Gunsteren W.F. (1999) The GROMOS Biomolecular Simulation Program Package. J. Phys. Chem. A. 103: 3596-3607.
  • Sippl M.J. (1993) Recognition of Errors in Three-Dimensional Structures of Proteins. Proteins 17: 355-362.
  • Soding J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21: 951-960.
  • Tamura K., Dudley J., Nei M., Kumar S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
  • Thompson J.D., Higgins D.G., Gibson T.J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specificgap penalties and weight matrix choice. Nucl. AcidsRes. 22: 4673-4680.
  • Vorobiev S., Strokopytov B., Drubin D.G., Frieden C., Ono S., Condeelis J., Rubenstein P.A., Almo S.C. (2003) The structure of non vertebrate actin: implications for the ATP hydrolytic mechanism. Proc. Natl. Acad. Sci. USA 100: 5760-5765.
  • Watson J.D., Milner-White E.J. (2002a) The conformations of polypeptide chains where the main-chain parts of successiveresidues are enantiomeric. Their occurrence in cationand anion-binding regions of proteins. J. Mol. Biol.315: 183-191.
  • Watson J.D., Milner-White E.J. (2002b) A novel main-chain anion-binding site in proteins: the nest. A particular combination of phi, psi values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J. Mol. Biol.315: 171-82.
  • Wiederstein M., Sippl M.J. (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensionalstructures of proteins. Nucl. Acids Res. 35: W407-W410.
  • Yang Z. (1998) Signaling tip growth in plants. Curr. Opin. Plant Biol. 1:525-30.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-54610031-1069-43d9-ac58-7d6d2ccfa45d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.