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Summary. 

of linear relaxation modulus of viscoelastic materials on the 

basis of the discrete stress data from non-ideal ramp-tests, where 

a time-variable strain rate is followed by a constant strain, is 

proposed. The approximations of the relaxation modulus in suc-

cessive time instants are determined on the basis of the stress 

measurements in only three appropriately chosen sampling 

-

laxation modulus, which indicate that the presented approach is 

suitable for estimating the relaxation modulus. The approxima-

-

linen method. However, the model errors are greater that in the 

acceptable. The noise robustness of the scheme must be noted, 
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INTRODUCTION

Relaxation modulus is probably the most important 

mechanical characteristic in the framework of linear 

viscoelastic behavior ,11]. The time-variable re-

laxation modulus ( ), 0, is theoretically the stress 
that occurs in the material response to a unit step strain 
( ). However, it is impossible to apply a step strain in 

]. In non-ideal stress relaxation tests the strain 

increases during the loading interval [0, ] until 

a predetermined strain is reached at ramp-time , after 

which that strain is maintained constant at that value. 

In ideal ramp-test [ ] the strain increases along 

a constant strain rate path. However, usually the constant 

strain rate in the loading phase cannot be achieved exper-

imentally [ 14,22]. F ], 

see also [1 ] and [22], we assume that the strain in non-
ideal ramp-test is described by the function: 

0 < 0

( ) =

0 < 0

+ + 0 < , (1)

where: the strain parameters are: = , 

= and = . The strain ( ) (1) is shown in 

Figure 1, where the ideal step-strain ( ) and the ideal 

ramp-test strain ( ) corresponding to linear loading 
phase strain, are also plotted.

Fig. 1. -ideal ramp strain and step-strain; 
= 1 [ ], = 0.001 [ ]

Different methods [ 14-1 ,18, ,22,2 ] have 

been proposed during the last few decades for the relax-

ation modulus determination using the stress data histo-

ries from non-ideal relaxation tests. 

addressed for the case of the linear loading phase strain. 

-Phillips [2 ] method and the 

optimal relaxation modulus identification schemes pre-

sented in [15,22] have been designed for non-ideal 

stress relaxation test with a time variable loading phase 

strain rate. For detailed references and an overview, see 
and the recent publication [22].

In the previous paper [2 ], based on the mathemati-
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the non-ideal ramp-test (1), the analytical formulas to 

approximate the relaxation modulus for an arbitrary 

time instant have been derived. Under standard and mild 

assumption concerning the relaxation modulus of the 

viscoelastic material and the rheological experiment it 

has been proved, that for noise-free stress measurements 

the resulting relaxation modulus model is monotonically 

decreasing continuous function of time with at most one 

discontinuity point. 

To develop a fast algorithm for the relaxation modu-

lus identification using discrete-time stress measure-

ments obtained in the ramp-test ( ) (1), in which the 
relaxation modulus approximations in the successive 

time instants are calculated on the basis of at most three 

points of the stress data, is a basic concern. The numeri-

cal analysis is perf x-

ample both for noise free as well as noise corrupted 

stress measurements. Comparing the results obtained for 

the new and two other known algorithms with the true 

values of the relaxation modulus we will draw conclu-

sions regarding the accuracy and applicability of the 

method proposed. 

In the previous paper [2 ] under standard assump-

tions concerning the relaxation modulus ( ) of the 
linear viscoelastic material [2 ; (4)] the

following formula is derived for 0 < 4:

( )( ) =
( )

(2 ) (2)

and the next rule is developed for > 4:

( )( ) = + ( + ) +

+ + ,

which approximate the modulus ( ). In subsequent 

sections a complete algorithm for computing the relaxa-

tion modulus using discrete-time stress measurements 

from non-ideal ramp test (1) is presented and examined 

The computation of the relaxation modulus accord-

ing to the above formulas involves the following steps.
1. Design the experiment – ramp-test (1) – with the 

predetermined constant strain level and the ramp-

time , i.e., select the sampling instants , =

1,… , , such that = , = and

= 4 for some integer 1.
2. Perform the stress relaxation test (1), record and 

( ) = ( ) + ( )

1,… , = =

= 4 1

2. Perform the stress relaxation test (1), record and 

store the stress measurements ( ) = ( ) + ( ), 

corresponding to the chosen points , = 1,… , , 

where ( ) is additive measurement noise. 
For = 1,… , calculate the relaxation modulus 
( )( ) according to formula:

( )( ) =
( )

(2 ).

4. For = + 1,… , 5 determine the relaxation 

modulus ( )( ) using the rule: 

( )( ) =
8

3
+
3

4

7

3
( + ) +

+ + .

Remark. Note, that when the equidistant

time sampling = is applied, the existence of 

an integer 1 such that = 4 is obvious ap-
plicability condition of the scheme.

[2 ] developed a method, where 

the correction of the time is used as follows:

( ) = ( ),

for an arbitrary . Thus, the relaxation modulus 

approximation can be computed for 2. For 

constant loading strain rate Sorvari and [14]

proposed differential formula:

( )( ) = ( + ) ( + ),

according to which the approximate value of the relaxa-

tion modulus for an arbitrary 0 is computed using 

the stress measurements and their derivatives for +

. The above methods are used in numerical studies 
due to their approximate “nature”. 

Example 1 – noise-free measurements. Consider vis-

coelastic material whose relaxation modulus is de-

scribed by - Williams-Watts) model 

of the form [ ]:

( ) = ( ) , (4)

where: = 10 [ ], the parameter = 0.5 [ ], and 

the relaxation times are = 3 [ ] (material and

= 100 [ ] (material The strain = 0.001 [ ] and 

the time-horizon = 20 [ ] are assumed for experi-

ment. The test data was equally spaced in the time in-
[0, ] = 1 [ ] = 2 [ ]

In the previous paper [2 ], based on the mathemati-
cal properties of the problem of relaxation modulus 

recovery from time-measurements of the stress ( ) in

,
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Ta b l e  1 .  -

Number of sampling points  N [-]

tR s] New method

Number of sampling points  N [-]

tR s] New method

Fig. 2. 

= 1 [ ] and and ] and = 5 [ ], noise, noise-free case

= 100 [ ] = 0.001 [ ]

= 20 [ ]

ment. The test data was equally spaced in the time in-

terval [0, ]. The ramp times: = 1 [ ], = 2 [ ] and

= 5 [ ] have been taken in experiment studies. Thus, 

the condition 18 [2 , Remark 1] which is suffi-

cient for the monotonicity of the relaxation modulus 

model determined according to the proposed method is 

satisfied for material (4) in every case examined. The 

s-Phillips and Sorvari- rules and the new 

method are studied. For any method the number of

sampling points are chosen according to the applica-
bility conditions of the respective scheme. Noise free 

measurements ( ) = ( ), = 1,… , , are assumed. 

To estimate the approximation error of the relaxation 

modulus (4) for the new method the following mean 

square relative index is taken:

( ) =
( )( ) ( )

100%

( ) =
( )( ) ( )

( )
100%,

where: = 5 is the corrected number of sam-

pling instants for which the approximate value of the 

relaxation modulus ( )( ) can be determined using 

the scheme proposed. The indices ( ) and
( ) -Phillips and Sorvari-

methods are defined by analogy. The indices 
( ), ( ) and ( ) for noise-free 

stress measurements are given in Table 1 for . 

he courses of this indices as a function 

of are shifted in Figure 2 using the logarithmic axis to 
obtain the best clearness if this graph. 

error

Noise-free case, = 1 [ ]

= 80 = 240 = 320 = 400 = 480

( ) [%] 4, - 2, - -4 -4 -4 -4

( ) [%] -4 5, -4 -4 -4 -4 -4

( ) [%]

Noise-free case, = 2 [ ]

= 40 = 80 = 120 = 160 = 200 = 240

( ) [%] 2,77 - - - - -

( ) [%] 45 - 2,74 - - - - -

( ) [%]

Noise-free case, = 5 [ ]

= 32 = 80 = 112 = 160 = 208 = 240

( ) [%]

( ) [%]

( ) [%]
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Ta b l e  2 .  -

Fig. 3. ( )( ), ( )( ), ( )( ) of the 

relaxation modulus ( ) -free case, = 2 [ ]

test machine the noises ( ) have been generated inde-
pendently by random choice with normal distribution 

with zero mean value and variance equal to % and 

% of the mean integral value ( ) of the 

signal ( ) in the time interval [0, ]. Such measure-
ment noises are even strongest than the true disturb-

ances recorded for the plant materials (see [17; Chapter 

5.5.4]). The experiment and next the computations of

the approximate relaxation modulus model have been 

repeated n times. The mean values ( ), 
( ) and ( ) of the indices ( ), 

( ) and ( ), respectively, obtained for 

are given in Table 2 for the case of weak 

The 

-Phillips relaxation modulus model ( )( ) does
not depend essentially on the measurement noises, while 

the mean value of the noise is zero. oth for the new 

Example 2 – noise robustness. We consider again the 

modulus (4). In order to model the noise produced by a 

test machine the noises ( ) have been generated inde-

Fig. 4. ( )( ), ( )( ), ( )( ) of the 

relaxation modulus ( ) -free case, = 2 [ ]

It can be seen from the above simulation results that 
for noise-free stress measurements the new algorithm 

ensures very good accuracy of the relaxation modulus 

approximation, which is comparable with the -

Phillips rule and better than for the Sorvari- n

method, whenever the number of the measurements is 

appropriately chosen in accordance with the ramp-time 

and the relaxation time of the material. The relaxa-

tion modulus ( )( ), ( )( ) and ( )( ) calculat-

ed according to the considered methods for time interval 
[0; 3,75] seconds are plotted for = 2 [ ] and

= 160 and in Figure 4 (ma-

). The relaxation modulus ( ) (4) is also 

marked in both figures.

errors

W , = 1 [ ]

= 80 = 160 = 240 = 320

( ) [%]

( ) [%]

( ) [%]

W , = 2 [ ]

= 40 = 80 = 120 = 160 = 200 = 240

( ) [%]

( ) [%]

( ) [%]

Weak , = 5 [ ]

= 32 = 80 = 112 = 160 = 208 = 240

( ) [%]

( ) [%]

( ) [%] 1,75
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( )

the mean value of the noise is zero. oth for the new 

and Sorvari- accuracy of the relax-
ation modulus approximation are dependent on the 

noises, however, for Sorvari-

approximation errors are multiple greater than in the 

case of the new method. Similar simulation results are 

obtained for material xample of the models 
( )( ), ( )( ), ( )( ) and the “true” relaxation 

for strong

noises; the ramp-time = 2 [ ] and the number of 

measurements = 160 are applied here. The respec-

(weak noises) and 8 (strong noises). The models 
( )( ) are generally fairly smooth, however the mod-

els ( )( ) and especially ( )( ) are not. 

Fig. 5. ( )( ), ( )( ), ( )( ) of the 

relaxation modulus ( )

= 2 [ ]

Fig. 6. ( )( ), ( )( ), ( )( ) of the 

relaxation modulus ( )

= 2 [ ]

( )

( )

= 2 [ ]

In turn, the relaxation modulus ( ) (4) of material 

-times 

= 1 [ ] and = 5 [ ]

i-

ously, the number of measurements = 160 is taken. 

Through a comparison of the Figur
realize how the accuracy of the relaxation modulus 

approximation strongly depend on the respective choice 

of such experiment parameters as the ramp-time and 

the sampling period .

error

= 1 [ ]

= 80 = 160 = 240 = 320

( ) [%]

( ) [%] - - - -

( ) [%]

= 2 [ ]

= 40 = 80 = 120 = 160 = 200 = 240

( ) [%]

( ) [%] - - - -

( ) [%]

= 5 [ ]

= 32 = 80 = 112 = 160 = 208 = 240

( ) [%]

( ) [%]

( ) [%] 2,717

( )

= 5 [ ]

Example 3 – Young modulus identification. The iden-

tifiability (0)

has been also examined. The accuracy of the initial 

value (0) identification in the case of the new method 

has been measured by relative means error 0( )

defined as a mean value of the square relative errors 
( )( ) ( )

( )
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tests is proposed and analyzed. The approximations of 

the relaxation modulus in successive time instants are de-

termined on the basis on the stress measurements in only 

three appropriately chosen sampling points. Numerical 

results are provided to compare the presented method with 

two other alternative procedures known in the literature. 

-

-

the initial value of the estimating of the initial value of (0).
by the new 

. The approximation accuracy 

obtained by the new method is worse than that guaranteed 

interval is an excellent advantage of the new scheme. 

poorly estimated. The new method provides better ap-

more so that the simulation computations indicate that 

It seems also reasonable to use the new method to pro-

as well as the results of the numerical studies presented 

above, especially acceptable noise robustness, suggest 

Fig. 9. ( )( ), ( )( ), ( )( ) of the 

relaxation modulus ( )

= 1 [ ]

Fig. 10. ( )( ), ( )( ), ( )( ) of the 
relaxation modulus ( )

= 5 [ ]

( )

0
defined as a mean value of the square relative errors 

( )( ) ( )

( )
for repetitions of the numerically 

simulated stress relaxation test (1) in time interval
[0, ]. The respective indices for the two other methods
are defined by analogy. In the ca -Phillips

method the value of ( )( 2) is chosen as a (0)

approximation. The numerical studies results obtained 

are summarized in Table 4 for weak and 

in Table 5 for strong noises. Clearly, t u-

lus approximation errors -Phillips

method is nearly independent of the number of sampling 

points and the noises intensity, however the errors in-

creases with the ramp-time . For Sorvari-
method the errors decreases with the increasing number 

of sampling points, but still are unacceptable big. The 

smallest errors of (0) approximation are guaranteed 

i-

ment parameters and , the errors can be reduced 
below 1,5%.

(0)

Fig. 7. ( )( ), ( )( ), ( )( ) of the 
relaxation modulus ( )

= 2 [ ]

Fig. 8. ( )( ), ( )( ), ( )( ) of the 

relaxation modulus ( )

= 2 [ ]

relaxation modulus of viscoelastic materials using discrete 

time-measurements of the stress from non-ideal ramp-
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Ta b l e  4 .  (0) approximation for the 

Ta b l e  5 .  (0) approximation for the 

that the proposed scheme can be used successfully within 

the practical point of view has been specially emphasized 

while the scheme derivation and because it does not 

require any other experimental technique more sophis-

ticated than the equidistant sampling of time instants 

during rheological experiment, the presented algorithm 

is easy to implement and fast to use since only three 

measured stress data points are used to evaluate the re-

laxation modulus at any time instant. Thus the scheme 

can be easily implemented in an arbitrary computational 

environment supporting the rheological experiment.

5. The problems of viscoelastic model determination, in which 

the relaxation test stress history may provide experimental 

error

= 1 [ ]

= 80 = 160 = 240 = 320

0( ) [%] 1,42

0( ) [%]

0( ) [%]

= 2 [ ]

= 40 = 80 = 120 = 160 = 200 = 240

0( ) [%] 1,74

0( ) [%] 17,87 17,88 17,88 17,88

0( )[%]

, = 5 [ ]

= 32 = 80 = 112 = 160 = 208 = 240

0( ) [%]

0( ) [%]

0( ) [%] 22,54 14,42

(0)

errors

W , = 1 [ ]

= 80 = 160 = 240 = 320

0( ) [%] 2,858

0( ) [%]

0( ) [%] 5,85

W , = 2 [ ]

= 40 = 80 = 120 = 160 = 200 = 240

0( ) [%] 2,114 1,742 

0( ) [%] 17.888 17,88 17,87

0( ) [%] 7,715 7,452

W , = 5 [ ]

= 32 = 80 = 112 = 160 = 208 = 240

0( ) [%] 4,112 12,42

0( ) [%]

0( ) [%] 14,41 

(0)
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