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Summary. A new fast scheme for approximate identification
of linear relaxation modulus of viscoelastic materials on the
basis of the discrete stress data from non-ideal ramp-tests, where
a time-variable strain rate is followed by a constant strain, is
proposed. The approximations of the relaxation modulus in suc-
cessive time instants are determined on the basis of the stress
measurements in only three appropriately chosen sampling
points. The numerical simulations are conducted for KWW re-
laxation modulus, which indicate that the presented approach is
suitable for estimating the relaxation modulus. The approxima-
tion of relaxation modulus is more accurate than in Sorvari-Ma-
linen method. However, the model errors are greater that in the
case of Zapas-Phillips approach and the quality deterioration is
acceptable. The noise robustness of the scheme must be noted,
especially if compared with Sorvari-Malinen scheme.

Key words: relaxation test, non-ideal ramp-test, relaxation mod-
ulus, KWW model, identification method.

INTRODUCTION

Relaxation modulus is probably the most important
mechanical characteristic in the framework of linear
viscoelastic behavior [1,7,10,11]. The time-variable re-
laxation modulus G(t), t = 0, is theoretically the stress
that occurs in the material response to a unit step strain
£(t). However, it is impossible to apply a step strain in
experiments. Loading is never done infinitely fast
[3,10,16]. In non-ideal stress relaxation tests the strain
increases during the loading interval [O,tz] until
a predetermined strain & is reached at ramp-time tg, after
which that strain &, is maintained constant at that value.
In ideal ramp-test [10] the strain increases along
a constant strain rate path. However, usually the constant
strain rate in the loading phase cannot be achieved exper-
imentally [10,14,22]. Following Flory and McKenna [3],
see also [16] and [22], we assume that the strain in non-
ideal ramp-test is described by the function:

0 for t<O0
3
e(t) = g(t—%R) +bt+c for 0<t<tg (1)
& fOT tZtR
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where: the strain parameters are: a = — %0 (—t ) ,

R

b= %f—o and ¢ = —ieo. The strain £(t) (1) is shown in
R

Figure 1, where the ideal step-strain £,(t) and the ideal
ramp-test strain & (t) corresponding to linear loading
phase strain, are also plotted.
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Fig. 1. An ideal and non-ideal ramp strain and step-strain;
tg = 1[s], &g = 0.001 [—]

Different methods [7,10,14-16,18,19,22,23] have
been proposed during the last few decades for the relax-
ation modulus determination using the stress data histo-
ries from non-ideal relaxation tests. Most of them are
addressed for the case of the linear loading phase strain.
Only the classical Zapas-Phillips [23] method and the
optimal relaxation modulus identification schemes pre-
sented in [15,22] have been designed for non-ideal
stress relaxation test with a time variable loading phase
strain rate. For detailed references and an overview, see
[3] and the recent publication [22].
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In the previous paper [20], based on the mathemati-
cal properties of the problem of relaxation modulus
recovery from time-measurements of the stress o (t) in
the non-ideal ramp-test (1), the analytical formulas to
approximate the relaxation modulus for an arbitrary
time instant have been derived. Under standard and mild
assumption concerning the relaxation modulus of the
viscoelastic material and the rheological experiment it
has been proved, that for noise-free stress measurements
the resulting relaxation modulus model is monotonically
decreasing continuous function of time with at most one
discontinuity point.

To develop a fast algorithm for the relaxation modu-
lus identification using discrete-time stress measure-
ments obtained in the ramp-test £(¢t) (1), in which the
relaxation modulus approximations in the successive
time instants are calculated on the basis of at most three
points of the stress data, is a basic concern. The numeri-
cal analysis is performed using the KWW material ex-
ample both for noise free as well as noise corrupted
stress measurements. Comparing the results obtained for
the new and two other known algorithms with the true
values of the relaxation modulus we will draw conclu-
sions regarding the accuracy and applicability of the
method proposed.

MODEL OF THE RELAXATION MODULUS

In the previous paper [20] under standard assump-
tions concerning the relaxation modulus G(t) of the
linear viscoelastic material [20; Assumption (4)] the
following formula is derived for 0 < t < tz/4:

M) (p) =  R®
G (t) 12&9(tg—t)t2

o(2t), 2
and the next rule is developed for t > tg/4:

8 3t 7
G () = Ea(t +TR) — ot +tR) +

+;Toa(t+%), 3)

which approximate the modulus G(t). In subsequent
sections a complete algorithm for computing the relaxa-
tion modulus using discrete-time stress measurements
from non-ideal ramp test (1) is presented and examined
for simulated KWW model data.

IDENTIFICATION ALGORITHM

The computation of the relaxation modulus accord-
ing to the above formulas involves the following steps.
1. Design the experiment — ramp-test (1) — with the

predetermined constant strain level gy and the ramp-

time tg, i.e., select the sampling instants t;, i =

1,..,N, such that t; =h, tj;;—t;=h and

tg = 4iyh for some integer iy = 1.
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2. Perform the stress relaxation test (1), record and
store the stress measurements &(t;) = a(t;) + z(t;),
corresponding to the chosen points t;,i =1,...,N,
where z(t;) is additive measurement noise.

3. For i =1,..,i, calculate the relaxation modulus
GNM(t,) according to formula:

tr? _
GO = fppmepe 0 (2L0)-

4. Fori=1iy+1,..,N—5i, determine the relaxation
modulus G M) (t,) using the rule:

8 3t 7
GMM(t) = g&(ti +TR) — 3 0t +te) +
0 0

+25(t +25).
3gg 4

Remark. Note, that in view of (3), when the equidistant
time sampling t;,; — t; = h is applied, the existence of
an integer iy = 1 such that tz = 4iyh is obvious ap-
plicability condition of the scheme.

OTHER APPROXIMATE METHODS

Zapas and Phillips [23] developed a method, where
the correction t — ‘7'3 of the time is used as follows:

@P) (4 _tRY _ L =4
G (tl 2) an(tl)a

for an arbitrary t; > tz. Thus, the relaxation modulus
approximation can be computed for t; = tgz/2. For
constant loading strain rate Sorvari and Malinen [14]
proposed differential formula:

1 _ t .
GEM(t) = ga(ti +tg) — ﬁ o (t; + tg),

according to which the approximate value of the relaxa-
tion modulus for an arbitrary t; = 0 is computed using
the stress measurements and their derivatives for t; +
tg. The above methods are used in numerical studies
due to their approximate “nature”.

NUMERICAL ANALYSIS

Example 1 — noise-free measurements. Consider vis-
coelastic material whose relaxation modulus is de-
scribed by KWW (Kohlrausch- Williams-Watts) model
of the form [3, 16]:

G(t) = Goe™ /D, )

where: G, = 10° [Pa], the parameter § = 0.5 [-], and
the relaxation times are T = 3 [s] (material A) and
T = 100 [s] (material B). The strain &, = 0.001 [-] and
the time-horizon T = 20 [s] are assumed for experi-
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ment. The test data was equally spaced in the time in-
terval [0, T]. The ramp times: tg = 1 [s], tg = 2 [s] and
tg = 5 [s] have been taken in experiment studies. Thus,
the condition t; < 187 [20, Remark 1] which is suffi-
cient for the monotonicity of the relaxation modulus
model determined according to the proposed method is
satisfied for material (4) in every case examined. The
Zapas-Phillips and Sorvari-Malinen rules and the new
method are studied. For any method the number N of
sampling points t; are chosen according to the applica-
bility conditions of the respective scheme. Noise free
measurements 6(t;) = a(t;), i =1, ..., N, are assumed.
To estimate the approximation error of the relaxation
modulus (4) for the new method the following mean
square relative index is taken:
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M) (t))—G(t

_ 312
ERRG™ = L5 | o 2] 100%,

N ~i=1

where: N = N — 5i, is the corrected number of sam-
pling instants t; for which the approximate value of the
relaxation modulus G ™) (t;) can be determined using
the scheme proposed. The indices ERRG®") and
ERRG®M™ for Zapas-Phillips and Sorvari-Malinen
methods are defined by analogy. The indices
ERRG™™), ERRG®P) and ERRGG™ for noise-free
stress measurements are given in Table 1 for material A.
For material B the courses of this indices as a function
of N are shifted in Figure 2 using the logarithmic axis to
obtain the best clearness if this graph.

Table 1. Mean relative errors of the relaxation modulus approximation for the new method and Zapas-Phillips and Sorvari-Ma-

linen rules; material A, noise-free case

Mean relative Noise-free case, tg = 1 [s]
error N=80| N=160 =240| N=320| N =400| N =480
ERRG™M) [%] |4,32E-3 |2,46E-3 |8,202E-4 |4,158E-4 |3,038E-4 |2,843E-4
ERRGUZP) [%] |6,39E-4 |5,02E-4 |4,61E-4 |4,415E-4 |4,302E-4 |4,228E-4
ERRG®M [%] (0,273 0,101 0,061 0,044 0,035 0,03
Noise-free case, tg = 2 [s]
N=40| N=80 =120| N=160| N =200| N =240
ERRG™M) [%] |2,77E-3 |0,011 3,997E-3 |2,204E-3 |1,637E-3 |1,467E-3
ERRG@P) [%] |345E-3 |2,74E-3 |2,533E-3 |2,432E-3 [2,373E-3 |2,335E-3
ERRGS™ [9] | 1,02 0,399 0,247 0,182 0,148 0,127
Noise-free case, tg = 5 [s]
N=32| N=80| N=112| N=160| N =208| N = 240
ERRGWNM) [%] |0,103 0,017 0,013 0,014 0,014 0,015
ERRG®P) [%] 10,031 0,027 0,026 0,026 0,026 0,025
ERRGGM [%] |2,562 1,057 0,831 0,675 0,597 0,563
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Fig. 2. Mean relative errors of the relaxation modulus approximation for the new method and Zapas-Phillips and Sorvari-Malinen

rules; material B, tgx = 1 [s] and tg = 5 [s], noise-free case
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It can be seen from the above simulation results that
for noise-free stress measurements the new algorithm
ensures very good accuracy of the relaxation modulus
approximation, which is comparable with the Zapas-
Phillips rule and better than for the Sorvari-Malinen
method, whenever the number of the measurements is
appropriately chosen in accordance with the ramp-time
tr and the relaxation time of the material. The relaxa-
tion modulus GV (t), G@P)(t) and GSM™ (¢) calculat-
ed according to the considered methods for time interval
[0;3,75] seconds are plotted for tz =2[s] and
N = 160 in Figure 3 (material A) and in Figure 4 (ma-
terial B). The relaxation modulus G(t) (4) is also
marked in both figures.

Example 2 — noise robustness. We consider again the
materials A and B described by the KWW relaxation
modulus (4). In order to model the noise produced by a

= == Zapas-Phillips method
----- Sorvari-Malinen method
New method

Relaxation modulus G(t)

9,0E+08 -

.........

6,0E+08 -

Relaxation modulus [Pa]

3,0E+08 )
0 1 2 3 4
Material A )
noise-free Time ¢ [s]

Fig. 3. Approximations GV (t), G@P)(t), GEM(t) of the
relaxation modulus G (t); material A, noise-free case, tg = 2 [s]
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test machine the noises z(t;) have been generated inde-
pendently by random choice with normal distribution
with zero mean value and variance equal to 100% and
200% of the mean integral value %fOT o(A)dA of the
signal ¢(t) in the time interval [0,T]. Such measure-
ment noises are even strongest than the true disturb-
ances recorded for the plant materials (see [17; Chapter
5.5.4]). The experiment and next the computations of
the approximate relaxation modulus model have been
repeated =100 times. The mean values MERRG %P,
MERRGSM and MERRG WM of the indices ERRG%P),
ERRG®M™) and ERRG™M), respectively, obtained for
material A are given in Table 2 for the case of weak
100% noises and in Table 3 for 200% strong noises. The
Zapas-Phillips relaxation modulus model G #P)(t) does
not depend essentially on the measurement noises, while

1,0OE+09 - = — Zapas-Phillips method

----- Sorvari-Malinen method
New method

Relaxation modulus G(t)

.........

9,0E+08 -

Relaxation modulus [Pa]

8,0E+08 T T T )
0 1 2 3 4
Material B
noise free Time ¢ [s]

Fig. 4. Approximations G ™) (t), G@P)(t), GEM(t) of the
relaxation modulus G (t); material B, noise-free case, tg = 2 [s]

Table 2. Mean relative errors of the relaxation modulus approximation for the new method and Zapas-Phillips and Sorvari-Ma-

linen rules; material A, weak noises 100%

Mean relative Weak noises 100%, tp = 1 [s]
errors N =80 N =160 N = 240 N =320
MERRG®™M) [%] | 0,0474 0,04749 0,04618 0,04602
MERRG@P) [%] |0,004516 0,004493 0,004324 0,004399
MERRGSM) [%] |0,3195 0,2425 0,3595 0,5662
Weak noises 100%, tz = 2 [s]
N=40 | N=80 | N=120 | N=160| N =200| N =240
MERRG(M) [05]0,04374  0,04892  [0,04264 [0,04122 |0,04084 |0,04357
MERRG@P) [%] |0,007173 |0,006491 [0,006279 [0,006276 |0,006211 |0,006055
MERRG®S™ [%] | 1,057 0,526 0,5102 0,6218 0,83 1,103
Weak noises 100%, tg = 5 [s]
N=32| N=80 | N=112| N=160| N =208| N =240
MERRGMM) [04] 10,1263 0,04797  [0,04636 |0,0611 0,07399 |0,1013
MERRG@P) [%] 0,03425  ]0,03039 {0,02964 |0,0292 0,02892  |0,0289
MERRGSM) [%] | 2,647 1,526 1,75 2,499 3,65 4,625
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the mean value of the noise is zero. Both for the new
and Sorvari-Malinen methods the accuracy of the relax-
ation modulus approximation are dependent on the
noises, however, for Sorvari-Malinen method the mean
approximation errors are multiple greater than in the
case of the new method. Similar simulation results are
obtained for material B. An example of the models
GM) (), GEPI(t), GEM(t) and the “true” relaxation
modulus of material A are illustrated in Figure 5 for
weak 100% noises and in Figure 6 for strong 200%
noises; the ramp-time tp = 2 [s] and the number of
measurements N = 160 are applied here. The respec-
tive characteristics for material B are given in Figures 7
(weak noises) and 8 (strong noises). The models
G#P)(t) are generally fairly smooth, however the mod-
els GVM)(¢t) and especially G ™) (t) are not.
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In turn, the relaxation modulus G(t) (4) of material
B and the corresponding models for ramp-times
tg = 1[s] and tg = 5 [s] are recorded in Figures 9 and
10, respectively, for the case of weak noises; as previ-
ously, the number of measurements N = 160 is taken.
Through a comparison of the Figures 7,9 and 10 we can
realize how the accuracy of the relaxation modulus
approximation strongly depend on the respective choice
of such experiment parameters as the ramp-time t and
the sampling period h.
Example 3 — Young modulus identification. The iden-
tifiability of the constant uniaxial Young modulus G (0)
has been also examined. The accuracy of the initial
value G (0) identification in the case of the new method
has been measured by relative means error ERROM)
defined as a mean value of the square relative errors

Table 3. Mean relative errors of the relaxation modulus approximation for the for the new method and Zapas-Phillips and

Sorvari-Malinen rules; material A, strong noises 200%

Mean relative Strong noises 200%, tg = 1 [s]
error N =80 N =160 N =240 N =320
MERRG™M) [%] 10,097 0,092 0,092 0,09
MERRG®P) [%] |8,527E-3 8,283E-3 8,186E-3 8,362E-3
MERRGGM) [%] |0,363 0,388 0,659 1,053
Strong noises 200%, tg = 2 [s]
N =40 N=80 | N=120| N=160| N =200 | N =240
MERRG™M) [9] |0,082 0,086 0,081 0,078 0,08 0,083
MERRG#P) [%] 0,011 0,01 9,96E-3 9,96E-3 9,841E-3 |9,797E-3
MERRGGM) [9%] |1,098 0,649 0,794 1,103 1,553 2,077
Strong noises 200%, tg = 5 [s]
N =32 N=80 | N=112| N=160| N=208| N =240
MERRG M) [%] |0,15 0,07 0,074 0,108 0,147 0,181
MERRG#P) [%] |0,038 0,034 0,033 0,033 0,033 0,032
MERRGGM) [%] |2,733 2,002 2,717 4,293 6,713 8,776
'E‘ 1 -_— Zapas-?hilliPs method ’E‘ 3 = = Zapas-Phillips method
— 90E+08 11 eeeee Sorvari-Malinen method = 9,0B+08 11 —eeee Sorvari-Malinen method
_;5 - New méth(’d -—§ \ New method
g 7,0EH08 +~\\=  ceceeeee Relaxation modulus G(t) "é 7,0E+08 +\*.  eeeernnnn Relaxation modulus G(t)
5 =
2 5,0E+08 - S 50E+08 -
& 3,0E+08 T T T ) o 3,0E+08 : : )

0 1 2 3 4 0 1 2
Material A, #;=2 [s] k Material A, #;=2 [s] .
weak noises 100 % Time 1 [s] strong noises 200% Time ¢ [s]

Fig. 5. Approximations GV (t), GZP)(t), GEM(t) of the
relaxation modulus G(t); material A, weak noises 100%,
tgp = 2 [S]

Fig. 6. Approximations GV (t), GZP)(t), GEM(t) of the
relaxation modulus G(t); material A, strong noises 200%,
tg = 2 [s]
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tests is proposed and analyzed. The approximations of

[G<NM>(t1)—c(o)
the relaxation modulus in successive time instants are de-

2
] for 100 repetitions of the numerically

G(0)

simulated stress relaxation test (1) in time interval termined on the basis on the stress measurements in only
[0, T]. The respective indices for the two other methods three appropriately chosen sampling points. Numerical
are defined by analogy. In the case of Zapas-Phillips results are provided to compare the presented method with
method the value of G%P)(tz/2) is chosen as a G(0) two other alternative procedures known in the literature.
approximation. The numerical studies results obtained 2. The model obtained by using Zapas-Phillips method ex-
for material A are summarized in Table 4 for weak and actly describes the true KWW relaxation modulus, both
in Table 5 for strong noises. Clearly, the Young modu- for noise-free, see Figure 3 and 4, as well as for noise
lus approximation errors in the case of Zapas-Phillips corrupted stress measurements, see Figures 5-10. How-
method is nearly independent of the number of sampling ever, the Zapas-Phillips method fails at the estimating of
points and the noises intensity, however the errors in- the initial value of G(0). The approximation accuracy
creases with the ramp-time ty. For Sorvari-Malinen obtained by the new method is worse than that guaranteed
method the errors decreases with the increasing number by Zapas-Phillips rule, but the applicability for short time
of sampling points, but still are unacceptable big. The interval is an excellent advantage of the new scheme.

smallest errors of G(0) approximation are guaranteed 3. In Sorvari-Malinen method the relaxation modulus is
by the new method. By respective choice of the experi- poorly estimated. The new method provides better ap-
ment parameters tp and N, the errors can be reduced proximation accuracy than Sorvari-Malinen method, the
below 1,5%. more so that the simulation computations indicate that

the approximation errors for Sorvari-Malinen method
are extremely sensitive to the noises (see Figures 5-10).
CONCLUSIONS It seems also reasonable to use the new method to pro-

duce a good fit of the constant Young modulus.
1. Anew fast scheme for approximate identification of linear 4. Both theoretical analysis of the scheme conducted in [20]
relaxation modulus of viscoelastic materials using discrete as well as the results of the numerical studies presented
time-measurements of the stress from non-ideal ramp- above, especially acceptable noise robustness, suggest

< LOE+09 -1 — = Zapas-Phillips method < LOE+09 - —— — Zapas-Phillips method
= : Sorvari-Mali hod & K i-Mali
2 N T orvari-Malinen metho — S m=e==- Sorvari-Malinen method
72}
g New method .% " New method
I K B "SRRI Relaxation modulus G(t) T VN eeeeennns i
€ 9,0E+08 - ; 9.0E+08 - Relaxation modulus G(t)
g 5
: £
5]
* §,0E+08 : : . . 2 80E+08 : : : .
0 1 2 3 4 0 1 2 3 4
Maten'al.B, =2 [s] . Material B, #,=1 [s] .
weak noises 100% Time ¢ [s] weak noises 100% Time ¢ [s]

Fig. 7. Approximations GV (t), G#P)(t), GEM(t) of the Fig. 9. Approximations GV (¢), GEP)(t), GEM(t) of the
relaxation modulus G(t); material B, weak noises 100%, relaxation modulus G(t); material B, weak noises 100%,

tg =2 [s] tg = 1[s]
¥ LOE+09 3 — — Zapas-Phillips method < 1,0E+09 - — — Zapas-Phillips method
. N @ ----- Sorvari-Malinen method &, L m==-- Sorvari-Malinen method
2 New method E New method
.= Norgreeeeeees Relaxation modulus G(t) e L s Relaxation modulus G(t)
S 9.0E+08 | g 90E+08 1\
[
=]
5 kS i}
p= = 1
» » (¥
= % v ‘l ;N
&~ 8,0E+08 . . —— & 80E+08 . . VAol
0 1 2 3 4 0 1 2 3 4
Material B, #=2 [s] . Material B, t,= 5 [s] .
strong noises 200% Time ¢ [S] weak noises 100% Time ¢ [s]

Fig. 8. Approximations G (¢t), GEP)(t), GEM(t) of the Fig. 10. Approximations G V™) (t), G@P)(t), GEM(t) of the
relaxation modulus G(t); material B, strong noises 200%, relaxation modulus G(t); material B, weak noises 100%,
tp =2[s] tp =5 [s]
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Table 4. Mean relative errors of G (0) approximation for the for the new method and Zapas-Phillips and Sorvari-Malinen rules;
material A, weak noises 100%

Mean relative Weak noises 100%, tp = 1 [s]
crrors N =80 N =160 N = 240 N =320
ERROMM) [o4] | 8,568 2,858 1,689 1,238
ERROZP) [%] 10,458 10,474 10,444 10,467
ERROGM [%] {8,568 5,85 4,938 4,362
Weak noises 100%, tz = 2 [s]
N=40 | N=80 | N=120| N=160| N =200 | N =240
ERROWM) [05] |12,65 4,906 2,989 2,114 1,742 1,731
ERROZP) [%] |17.892 17.888 17,9 17,88 17,86 17,87
ERROGM [9%] |15,36 10,81 9,027 8,239 7,715 7,452
Weak noises 100%, tg = 5 [s]
N=32| N=80 | N=112| N=160 | N =208 | N =240
ERROMM) [0] | 9,625 3,909 3,101 4,112 10,79 12,42
ERRO@P) [%] |33.263 33,26 33,25 33,24 33,26 33,24
ERROGM) [%] |22,64 16,73 15,49 14,9 14,41 13,91

Mean relative Strong noises 200%, tp = 1 [s]
error N =80 N =160 N =240 N =320
ERROWM) [05] |8,594 3,17 1,926 1,42
ERROZP) [9%] |10,46 10,46 10,46 10,46
ERROGM) [%] |8,674 5,907 4,804 4,405
Strong noises 200%, tg = 2 [s]
N =40 N=80 | N=120| N=160| N=200| N =240
ERRO(M) [o5] |12,6 5,138 3,301 2,36 1,74 2,183
ERROEP) [o] |17,87 17,88 17,88 17,89 17,89 17,88
ERROGM) [%] |15,33 10,85 9,128 8,399 7,632 7,403
Strong noises 200%, tp = 5 [s]
N =32 N=80 | N=112| N=160| N=208| N =240
ERRO(NM) [%] |10,19 4,413 3,544 4,391 9,023 15,64
ERROGP) [%] |33.23 33,26 33,25 33,26 33,24 33,23
ERROGM) [%] 22,54 16,78 15,35 14,64 14,42 13,97

Table 5. Mean relative errors of G (0) approximation for the for the new method and Zapas-Phillips and Sorvari-Malinen rules;
material A, strong noises 200%

that the proposed scheme can be used successfully within
a satisfactory range of viscoelastic materials. Moreover,
the practical point of view has been specially emphasized
while the scheme derivation and because it does not
require any other experimental technique more sophis-
ticated than the equidistant sampling of time instants
during rheological experiment, the presented algorithm

is easy to implement and fast to use since only three
measured stress data points are used to evaluate the re-
laxation modulus at any time instant. Thus the scheme
can be easily implemented in an arbitrary computational
environment supporting the rheological experiment.

The problems of viscoelastic model determination, in which
the relaxation test stress history may provide experimental
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data for identification, such as that considered in [1,6,9,13]
for polymeric liquids and solids, in [ 12] for metals and their
alloys orin [2, 5,8,17,21] for foods and biological materials,
constitute the area of applicability of the scheme.
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ALGORYTM IDENTYFIKACJI MODULU
RELAKSACJI MATERIALOW LEPKOSPREZYSTYCH
NA PODSTAWIE NIEIDEALNEGO TESTU
RELAKSACJI NAPREZEN O NIELINIOWYM
ODKSZTALCENIU WSTEPNYM

Streszczenie. Celem pracy byto opracowanie szybkiego algoryt-
mu identyfikacji modutu relaksacji materiatéw o wiasnosciach
liniowo lepkosprezystych na podstawie dyskretnych pomiaréw
naprezenia zgromadzonych w rzeczywistym tescie relaksacji
naprezen o zmiennej w czasie predkosci odksztalcania wstep-
nego. Zaproponowano prosty schemat identyfikacji, w ktérym
przyblizenie modulu w wybranej chwili czasu wyznaczane jest
na podstawie co najwyzej trzech pomiaréw naprezenia. Przepro-
wadzone badania numeryczne wskazujg, ze opracowana meto-
da zapewnia lepsze przyblizenie modutu relaksacji niz metoda
Sorvari-Malinena oraz akceptowalne pogorszenie jakosci jego
przyblizenia w poréwnaniu z reguta Zapasa-Phillipsa. Przewage
nowej metody nad regula Sorvari-Malinena stanowi takze wigk-
sza odporno$¢ na zaktocenia pomiarowe, jej zaleta w poréwnaniu
z regulg Zapasa-Phillipsa jest rozszerzenie zakresu stosowalnosci
o poczatkowy odcinek czasu. Metoda zapewnia bardzo dobre
przyblizenie warto$ci poczatkowej modutu relaksacji, a jej pro-
sty algorytm umozliwia zastosowanie w trybie on-line w czasie
eksperymentu reologicznego.

Stowa kluczowe: test relaksacji naprezen, modut relaksacji,
model KWW, algorytm identyfikacji.



