PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 03 |

Tytuł artykułu

Influence of inorganic nitrogen sources on K+/Na+ homeostasis and salt tolerance in sorghum plants

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This work aimed to study the regulation of K+/Na+ homeostasis and the physiological responses of salt-treated sorghum plants [Sorghum bicolor (L.) Moench] grown with different inorganic nitrogen (N) sources. Four days after sowing (DAS), the plants were transferred to complete nutrient solutions containing 0.75 mM K+ and 5 mM N, supplied as either NO3- or NH4+. Twelve DAS, the plants were subjected to salt stress with 75 mM NaCl, which was applied in two doses of 37.5 mM. The plants were harvested on the third and seventh days after the exposure to NaCl. Under the salt stress conditions, the reduction of K+ concentrations in the shoot and roots was higher in the culture with NO3- than with NH4+. However, the more conspicuous effect of N was on the Na+ accumulation, which was severely limited in the presence of NH4+. This ionic regulation had a positive influence on the K+/Na+ ratio and the selective absorption and transport of K+ in the plants grown with NH4+. Under control and salt stress conditions, higher accumulation of free amino acids and soluble proteins was promoted in NH4+ grown roots than NO3 - grown roots at both harvesting time, whereas higher accumulation of soluble sugars was observed only at 7 days of salt stress exposure. Unlike the NH4+ grown plants, the gas exchanges of the NO3- grown plants were reduced after 7 days of salt stress. These results suggest that external NH4+ may limit Na? accumulation in sorghum, which could contribute to improving its physiological and metabolic responses to salt stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

03

Opis fizyczny

p.841-852,fig.,ref.

Twórcy

autor
  • Departamento de Bioquı´mica e Biologia Molecular and Instituto Nacional de Cieˆncia e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceara´, CP 6039, Fortaleza, Ceara´ 60455-970, Brazil
  • Departamento de Bioquı´mica e Biologia Molecular and Instituto Nacional de Cieˆncia e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceara´, CP 6039, Fortaleza, Ceara´ 60455-970, Brazil
  • Departamento de Bioquı´mica e Biologia Molecular and Instituto Nacional de Cieˆncia e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceara´, CP 6039, Fortaleza, Ceara´ 60455-970, Brazil
autor
  • Departamento de Bioquı´mica e Biologia Molecular and Instituto Nacional de Cieˆncia e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceara´, CP 6039, Fortaleza, Ceara´ 60455-970, Brazil
  • Departamento de Bioquı´mica e Biologia Molecular and Instituto Nacional de Cieˆncia e Tecnologia em Salinidade (INCTSal/CNPq), Universidade Federal do Ceara´, CP 6039, Fortaleza, Ceara´ 60455-970, Brazil

Bibliografia

  • Abd-el Baki GK, Siefritz F, Man HM, Weiner H, Kaldenhoff R, Kaiser WM (2000) Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ 23:515–521. doi:10.1046/j.1365-3040.2000.00568.x
  • Alvarez-Pizarro JC, Gomes-Filho E, Prisco JT, Grossi-de-Sa´ MF,
  • Oliveira-Neto OB (2011) NH4+ stimulated low K+ uptake is associated with the induction of H? extrusion by the plasma membrane H+—ATPase in sorghum roots under K+ deficiency. J Plant Physiol 168:1617–1626. doi:10.1016/j.jplph.2011.03.002
  • Ardie SW, Liu S, Takano T (2010) Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep 29:865–874. doi: 10.1007/s00299-010-0872-2
  • Armengaud P, Sulpice R, Miller AJ, Stitt M, Amtmann A, Gibon Y (2009) Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidobpsis roots. Plant Physiol 150:772–785. doi:10.1104/pp.108.133629
  • Bavei V, Shiran B, Arzani A (2011) Evaluation of salinity tolerance in sorghum (Sorghum bicolor L.) using ion accumulation, proline and peroxidase criteria. Plant Growth Regul 64:275–285. doi:10.1007/s10725-011-9568-z
  • Borba LFP, Ferreira MA, Guim A, Tabosa JN, Gomes LHS, Santos VLF (2012) Nutritive value of diferents silage sorghum (Sorghum bicolor L. Moench) cultivares. Acta Sci Ani Sci 34:123–129. doi:10.4025/actascianimsci.v34i2.12853
  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:246–254. doi:10.1016/0003-2697(76)90527-3
  • Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants. J Plant Physiol 159:567–584. doi:10.1078/0176-1617-0774
  • Britto DT, Kronzucker HJ (2008) Cellular mechanism of potassium transport in plants. Physiol Plantarum 133:637–650. doi: 10.1111/j.1399-3054.2008.01067.x
  • Cataldo JM, Haroom M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue. Commun Soil Sci Plant 6:71–80. doi:10.1080/00103627509366547
  • Centritto M, Loreto F, Chartzoulakis K (2003) The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ 26:585–594. doi:10.1046/j.1365-3040.2003.00993.x
  • Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhuo M, Palmgren MG, Newman IA, Shabala S (2007a) Root plasma membrane transporters controlling K+/Na? homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725. doi: 10.1104/pp.107.110262
  • Chen Z, Cuin TA, Zhou MT, Womey A, Naidu BP, Shabala S (2007b) Compatible solutes accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255. doi:10.1093/jxb/erm284
  • Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657–661. doi:10.1093/jxb/erg072
  • Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root’s ability to retain K? correlates with salt tolerance in wheat. J Exp Bot 59:2697–2706. doi:10.1093/jxb/ern128
  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818. doi:10.1104/pp.104.057307
  • Dluzniewska P, Gressler A, Dietrich H, Schnitzler JP, Teuber M, Rennenberg H (2007) Nitrogen uptake and metabolism in Populus x canescens as affected by salinity. New Phytol 173:279–293. doi:10.1111/j.1469-8137.2006.01908.x
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017
  • Feija˜o AR, Silva JCB, Marques EC, Prisco JT, Gomes-Filho E (2011) Efeito da nutric¸a˜o de nitrato na toleraˆncia de plantas de sorgo suda˜o a` salinidade. Rev Cienc Agron 42:675–683. doi:10.1590/S1806-66902011000300014
  • Ferna´ndez-Ballester G, Garcı´a-Sa´nchez F, Cerda´ A, Martı´nez V (2003) Tolerance of citrus rootstock seedlings to saline stress based on their ability to regulate ion uptake and transport. Tree Physiol 23:265–271. doi:10.1093/treephys/23.4.265
  • Figueira EMAP, Caldeira GCN (2005) Effect of nitrogen nutrition on salt tolerance of Pisum sativum during vegetative growth. J Plant Nutr Soil Sci 168:359–363. doi:10.1002/jpln.200420442
  • Foyer CH, Noctor G, Lelandais M, Lescure JC, Valadier MH, Boutin JP, Horton P (1994) Short-term effects of nitrate, nitrite and ammonium assimilation on photosynthesis, carbon partitioning and protein phosphorylation in maize. Planta 192:211–220. doi: 10.1007/BF00194455
  • Frechilla S, Lasa B, Barretxe L, Lamsfus C, Aparicio-Tejo P (2001) Pea responses to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regul 35:171–179. doi:10.1023/A:1014487908495
  • Gaines TP, Parker MB, Gascho GJ (1984) Automated determination of chlorides in soil and plant tissue by sodium nitrate. Agron J 76:371–374. doi:10.2134/agronj1984.00021962007600030005x
  • Geiger M, Haake V, Ludewig F, Sonnewald U, Stitt M (1999) The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant Cell Environ 22:1177–1199. doi:10.1046/j.1365-3040.1999.00466.x
  • Ghars MA, Parre E, Debez A, Bordenave M, Richard L, Leport L, Bouchereau A, Savoure´ A, Abdelly C (2008) Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K?/Na? selectivity and proline accumulation. J Plant Physiol 165:588–599. doi:10.1016/j.jplph.2007.05.014
  • Guo S, Chen G, Zhuo Y, Shen Q (2007) Ammonium nutrition increases photosynthesis rate under water stress at early development stage of rice (Oriza sativa L.). Plant Soil 296:115–124. doi:10.1007/s11104-007-9302-9
  • Hasegawa PM, Bressan MA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Phys 51:463–499. doi:10.1146/annurev.arplant.51.1.463
  • Hoopen FT, Cuin TA, Pedas P, Hegelund JN, Shabala S, Schjoerring JK, Jahn TP (2010) Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences. J Exp Bot 61:2303–2315. doi:10.1093/jxb/erq057
  • Innocenti ED, Hafsi C, Guidi L, Navari-Izzo F (2009) The effect of salinity on photosynthetic activity in potassium-deficient barley species. J Plant Physiol 166:1968–1981. doi:10.1016/j.jplph.2009.06.013
  • Irshad M, Honna T, Eneji AE, Yamamoto S (2002) Wheat response to nitrogen source under saline conditions. J Plant Nutr 25:2603–2612. doi:10.1081/PLN-120015525
  • James RA, Munns R, Caemmerer SV, Trejo C, Miller C, Condon T (2006) Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected
  • barley and durum wheat. Plant Cell Environ 29:2185–2197. doi: 10.1111/j.1365-3040.2006.01592.x
  • Kant S, Kant P, Lips H, Barak S (2007) Partial substitution of NO3-by NH4+ fertilization increases ammonium assimilating enzyme activities and reduces the deleterious effects of salinity on the growth of barley. J Plant Physiol 164:303–311. doi:10.1016/j.jplph.2005.12.011
  • Lacerda CF, Cambraia J, Oliva MA, Ruiz HA (2003a) Osmotic adjustment in roots and leaves of two sorghum genotypes under NaCl stress. Braz J Plant Physiol 15:113–118. doi:10.1590/S1677-04202003000200007
  • Lacerda CF, Cambraia J, Oliva MA, Ruiz HA, Prisco JT (2003b) Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ Exp Bot 49:107–120. doi:10.1016/S0098-8472(02)00064-3
  • Lasa B, Frechilla S, Aparicio-Tejo PM, Lamsfus C (2002) Role of glutamate dehydrogenase and phosphoenolpyruvate carboxylase activity in ammonium nutrition tolerance in roots. Plant Physiol Biochem 40:969–976. doi:10.1016/S0981-9428(02)01451-1
  • Lu YX, Li CJ, Zhang FS (2005) Transpiration, potassium uptake and flow in tobacco as affected by nitrogen forms and nutrient levels. Ann Bot 95:991–998. doi:10.1093/aob/mci104
  • Maathius FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133. doi: 10.1006/anbo.1999.0912
  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plantarum 43:491–500. doi: 10.1023/A:100287353170
  • Massa D, Mattson NS, Lieth HJ (2009) Effects of saline root environment (NaCl) on nitrate and potassium uptake kinetics for rose plants. A Michaelis-Menten modeling approach. Plant Soil 318:101–111. doi:10.1007/s11104-008-9821-z
  • Miri K, Rana DS (2012) Evaluation of sweet sorghum (Sorghum bicolor) genotypes for biomass, sugar and ethanol production under different levels of nitrogen. Indian J Agr Sci 82:195–200
  • Moraes E ´ A, Queiroz VAV, Shaffert RE, Costa NMB, Nelson JD, Ribeiro SMR, Martino HSD (2012) In vivo protein quality of new sorghum genotypes for human consumption. Food Chem. doi:10.1016/j.foodchem.2012.03.079
  • Naumann JC, Young DR, Anderson JE (2007) Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiol Plant 131:422–433. doi:10.1111/j.1399-3054.2007.00973.x
  • Nieves-Cordones M, Martı´nes-Cordero MA, Martı´nez V, Rubio F (2007) An NH4+-sensitive component dominates high-affinity K+ uptake in tomato plant. Plant Sci 172:273–280. doi:10.1016/j.plantsci.2006.09.003
  • Nieves-Cordones M, Miller AJ, Alema´n F, Martı´nez V, Rubio F (2008) A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high affinity potassium transporter HAK5. Plant Mol Biol 68:521–532. doi:10.1007/s11103-008-9388-3
  • Olı´as R, Eljakaovi C, Li J, Morales PA, Marı´n-Manzano MC, Pardo JM, Belver A (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and effects the partitioning of Na? between plant organs. Plant Cell Environ 32:904–916. doi:10.1111/j.1365-3040.2009.01971.x
  • Sagi M, Dovrat A, Kipnis T, Lips SH (1997) Ionic balance and the production of biomass and organic nitrogen as affected by salinity and N source in annual ryegrass (Lolium multiflorum Lam). J Plant Nutr 20:1291–1316. doi:10.1080/01904169809365437
  • Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164:151–162. doi:10.1007/BF00396077
  • Shabala S, Cuin TA (2007) Potassium transport and plant salt tolerance. Physiol Plantarum 133:651–669. doi:10.1111/j.1399-3054.2007.01008.x
  • Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665. doi:10.1104/pp.106.082388
  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459. doi:10.1093/jxb/erq251
  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. doi:10.1093/aob/mcg058
  • Volkov V, Amtmann A (2006) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K?/Na? homeostasis under salinity stress. Plant J 48:342–353. doi:10.1111/j.1365-313X.2006.02876.x
  • Wang SM, Zhang JL, Liu XS, Li Z, Wu GQ, Cai JY, Flowers TJ, Wang SM (2009) Pucinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na?. Plant Cell Environ 32:486–496. doi:10.1111/j.1365-3040.2009.01942.x
  • Weatherburn MW (1967) Phenol-hipochlorite reaction for determination of ammonia. Anal Chem 39:971–974. doi:10.1021/ac60252a045
  • Yan K, Chen P, Shao H, Zhao S, Zhang L, Zhang L, Xul G, Sun J (2011) Responses of photosynthesis and photosystem II to higher temperature and salt stress in sorghum. J Agron Crop Sci 198:218–225. doi:10.1111/j.1439-037X.2011.00498.x
  • Yemm EW, Cocking EC (1955) The determination of amino-acids with ninhydrin. Analyst 80:209–213. doi:10.1039/AN9558000209
  • Zheng Y, Jia A, Ning T, Xu J, Li Z, Jiang G (2008) Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. J Plant Physiol 165:1455–1465. doi:10.1016/j.jplph.2008.01.001
  • Zhonghua T, Yanju L, Xiaorui G, Yuangang Z (2011) The combined effects of salinity and nitrogen forms on Catharanthus roseus: the role of internal ammonium and free amino acids during salt stress. J Plant Nutr Soil Sci 174:135–144. doi:10.1002/jpln.200900354

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-535ea693-2adb-485e-8f0c-a5e3164c0509
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.