PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 40 | 2 |

Tytuł artykułu

Żywienie zindywidualizowane oparte na badaniach genetycznych - możliwości zastosowania w praktyce - projekt Food4me

Autorzy

Warianty tytułu

EN
Personalised nutrition based on the genetic tests - the possibilities of introducing into practice - project Food4me

Języki publikacji

PL

Abstrakty

PL
Mnogość poznawanych procesów zachodzących w organizmie człowieka na poziomie komórkowym, osobniczych różnic genetycznych, w tym interakcji pomiędzy składnikami pożywienia i genotypem staje się wyzwaniem dla poradnictwa żywieniowego i ewentualnej weryfikacji zaleceń żywieniowych. Zastosowanie zindywidualizowanego poradnictwa dietetycznego opartego o badania genetyczne chociaż bardzo kuszące wymaga ostrożności. Pomimo, że poznano wiele zmian pojedynczych nukleotydów i zmian epigenetycznych to nadal wiedza o interakcjach pomiędzy tymi zmianami jest niewystarczająca. Zawężone spojrzenie i skupienie się w zaleceniach na pojedynczych interakcjach może prowadzić do ryzyka zagrożenia zdrowia. Prowadzone obecnie w Unii Europejskiej wieloośrodkowe badania w ramach projektu Food4me ukierunkowane są na badania efektywności zindywidualizowanych porad żywieniowych i opracowania narzędzi wdrażania spersonalizowanego poradnictwa żywieniowego. Wyniki prac konsorcjum dostępne będą w perspektywie najbliższych 2 lat.
EN
Nutrigenomics and its application - personalized nutrition, have the potential to change nutrition counselling and health promotion. However, taking into account the complexity of the interactions between the food components and genotype, in the present state of knowledge, the development of individualized dietary advice based on genetic data seems be to premature, however close. The future seems to be not so much the formulation of recommendations for individuals but for groups of individuals with a particular genotype. This requires scientifícally developed and validated procedures. The task of developing such tools have been taken within the project Food4me, that aims to assess the effectiveness of personalized nutrition counselling. The results of this comprehensive representative study will be available in the next two years.

Wydawca

-

Rocznik

Tom

40

Numer

2

Opis fizyczny

s.82-94,bibliogr.

Twórcy

autor
  • Pracowania Żywieniowych Czynników Ryzyka Zdrowia, Zakład Żywienia i Dietetyki z Kliniką Chorób Metabolicznych i Gastroenterologii, Instytut Żywności i Żywienia w Warszawie, Warszawa

Bibliografia

  • 1. Roche H.M.: Nutrigenomics - new approaches for human nutrition research. J. Sci. Food. Agr., 2006, 86, 8, 1156-1163.
  • 2. Afman L., Müller M.: Nutrigenomics: From Molecular Nutrition to Prevention of Disease. J. Am. Diet. Assoc., 2006, 106, 569-576.
  • 3. Gillies P.J.: Nutrigenomics: the Rubicon of molecular nutrition. J. Am. Diet. Assoc., 2003, 103, 50-55.
  • 4. Subbiah M.T.: Understanding the nutrigenomic definitions and concepts at the food-genome junction. OMICS., 2008, 12, 4, 229-35.
  • 5. Gibney M.J., Gibney E.R.: Diet genes and disease: implications for nutrition policy. Proc. Nutr. Soc., 2004, 63, 491-500.
  • 6. Fench M.: Genome health nutrigenomics and nutrigenetics - diagnosis and nutritional treatment of genome damage on a individual basis. Food. Chem. Toxicol., 2008, 46, 1365-1370.
  • 7. Pieszka M., Pietras M.P.: Nowe kierunki w badaniach żywieniowych - nutrigenomika. Rocz. Nauk. Zoot., 2010, 37, 83-103.
  • 8. Winnicki K.: Drugi kod, czyli co determinuje regiony aktywności transkrypcyjnej oraz miejsca inicjacji replikacji. Post. Hig. Med. Dosw., 2009, 63, 169-175.
  • 9. Ordovas J.M.: Genetic interactions with diet influence the risk of cardiovascular disease. Am. J. Clin. Nutr., 2006, 83, suppl, 443-446.
  • 10. Kaput J., Rodriguez R.L.: Nutritional genomics: the next frontier in the postgenomic era. Physiol. Genomics., 2004, 16,2, 166-177.
  • 11. Muller M., Kersten S.: Nutrigenomics: goals and strategies. Nat. Rev. Genet., 200, 4, 315-322
  • 12. Nicholson J.K., Lindon J.C.: Systems biology: Metabonomics, Nature, 2008, 23, 455, 7216, 1054-1056.
  • 13. Wishart D.S, Tzur D., Knox C., et al.: HMDB: the Human Metabolome Database. Nucleic Acids Res., 2007, 35 (Database issue): D521-526.
  • 15. Gętek M., Czech N., Fizia K., et al.: Nutrigenomoka - bioaktywne składniki żywności. Post. Hig. Med. Dośw. (online), 2013, 67, 255-260.- 15. Moss T.J., Wallrath L.L.: Connections between epigenetic gene silencing and human disease. Mutat. Res., 2007, 618, 163-174.
  • 16. Kersten S.: Peroxisome proliferator activated receptors and lipoprotein metabolism. PPAR Research, 2008, Article ID 132960, http://dx.doi.org/10.1155/2008/132960.
  • 17. Desvergne B., Michalik L., Wahli W.: Transcriptional regulation of metabolism. Physiol. Rev., 2006, 86, 2, 465-514.
  • 18. Nagata R., Nishio Y., Sekine O., et al.: Single nucleotide polymorphism (-468 Gly to A) at the promoter region of SREBP-1c associates with genetic defect of fructose-induced hepatic lipogenesis. J. Biol. Chem., 2004, 9, 279, 28, 29031-29042.
  • 19. Fuks F.: DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev., 2005,15, 490-495.
  • 20. Fan G, Hutnick L.: Methyl-CpG binding proteins in the nervous system. Cell. Res., 2005, 15,4, 15255-15261.
  • 21. Łukasik M., Karmalska J., Szutowski M.M., et al.: Wpływ metylacji DNA na funkcjonowanie genomu. Biul. Wydz. Farm., WUM 2009, 2, 13-18.
  • 22. Waterland R.A., Jirtle R.L.: Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Celi. Biol., 2003, 23, 5293-5300.
  • 23. Pembrey M.E.: Time to take epigenetic inheritance seriously. Eur. J. Hum. Genet., 2002, 10, 669-671.
  • 24. Hoffmann M.J., Muller M., Engers R., et al.: Epigenetic control of CTCFL/BORIS and OCT4 expression in urogenital malignancies. Biochem Pharmacol., 2006, 72, 1577-1588.
  • 25. Daura-Oller D., Cabre M., Montero M.A., et al.: Specific gene hypomethylation and cancer: New insights into coding region feature trends. Bioinformation, 2009, 3, 8, 340-343.
  • 26. Sulewska A., et al.: Folia Histochemica et Cytobiologica Bialystok, 2007, 45, 3, 149-159.
  • 27. Ostrowska J.: Herbaty - naturalne źródło antyoksydantów, Gazeta Farmaceutyczna, 2008, 1, 46-50.
  • 28. Fenech M., Baghurst P., Luderer W., et al.: Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, beta-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability - results from a dietary intake and micronucleus index survey in South Australia. Carcinogenesis, 2005, 26, 991-999.
  • 29. Kirk H., Cefalu W.T., Ribnicky D.M., et al.: Botanicals as epigenetic modulators for mechanisms contributing to development of metabolic syndrome. Metabolism 2008, 57, 7 Suppl 1, 16-23.
  • 30. Waterland R.A., Dolinoy D.C., Lin J.R., et al.: Maternal methyl supplements increase offspring DNA methylation at Axin fused. Genesis, 2006, 44, 401-406.
  • 31. Wolff G.L., Kodell R.L., Moore S.R., et al.: Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J., 1998, 12, 949-957.
  • 32. Duhl D.M., Vrieling H., Miller K.A., et al.: Neomorphic agouti mutations in obese yellow mice. Nat. Genet., 1994, 8, 1, 59-65.
  • 33. Albright C.D, Tsai A.Y, Friedrich C.B., et al.: Choline availability alters embryonic development of the hippocampus and septum in the rat. Brain Res Dev Brain Res., 1999, 113, 13-20.
  • 34. Albright C.D., Friedrich C.B., Brown E.C., et al.: Maternal dietary choline availability alters mitosis, apoptosis and the localization of TOAD-64 protein in the developing fetal rat septum. Brain. Res. Dev., 1999, 115, 123-129.
  • 35. Meck W.H., Williams C.L.: Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport., 1997, 8, 2831-2835.
  • 36. Meck W.H., Williams C.L.: Choline supplementation during prenatal development reduces proactive interference in spatial memory. Brain. Res. Dev. Brain. Res., 1999, 118, 51-59.
  • 37. Meck W.H., Williams C.L.: Metabolic imprinting of choline by its availability during gestation: implications for memory and attentional processing across the lifespan. Neurosci. Biobehav. Rev., 2003, 27, 385-399.
  • 38. Kunachowicz H., Nadolna I., Przygoda B., et al.: Tabele składu i wartości odżywczej żywności. Wydawnictwo Lekarskie PZWL, Warszawa 2005.
  • 39. Wu J, Lyons G.H., Graham R.D., Fenech M.F.: The effect of selenium, as selenomethionine, on genome stability and cytotoxicity in human lymphocytes measured using the cytokinesis-block micronucleus cytome assay. Mutagenesis. 2009, 24, 3, 225-232.
  • 40. Novembre J., Johnson T, Bryc K., et al.: Genes mirror geography within Europe. Nature., 2008, 456, 98-101.
  • 41. Salmela E., Lappalainen T., Fransson I., et al.: Genome-wide analysis of single nucleotide polymorphisms uncovers population structure in Northern Europe. PLoS ONE. 2008, 3, 3519.
  • 42. Hirschhorn J.N., Lohmueller K., Byrne E., et al.: A comprehensive review of genetic association studies. Genet. Med., 2002, 4, 2, 45-61.
  • 43. Joost H.G., Gibney M.J., Cashman K.D., et al.: Personalised nutrition: status and perspectives. Brit. J. Nutri., 2007, 98, 26-31.
  • 44. Johnson I.T., Belshaw N.J.: Environment, diet and gpg island methylation: Epigenetic signals in gastrointestinal neoplasia. Food Chem. Toxicol., 2008, 46, 1346-1359.
  • 45. Masson L.F., Mc Neill G., Avenell A.: Genetic variation and the lipid response to dietary intervention: a systematic review. Am. J. Clin. Nutr., 2003, 77, 1098-1111.
  • 46. Masson L.F., Mc Neill G.: The effect of genetic variation on the lipid response to dietary change: recent findings. Curr. Opin. Lipidol., 2005, 16, 61-67.
  • 47. Minihane A.M., Khan S., Leigh- -Firbank E.C.: ApoE polymorphism and fish oil supplementation in subjects with an atherogenic lipoprotein phenotype. Arterioscler. Thromb. Vasc. Biol., 2000, 20, 1990-1197.
  • 48. Calder P.C.: Polyunsaturated fatty acids and inflammation. Biochem. Soc. Trans., 2005, 33, 423-427.
  • 49. Flavell D.M., Pineda T.I., Jamshidi Y.: Variation in the PPARalpha gene is associated with altered function in vitro and plasma lipid concentrations in Type II diabetic subjects. Diabetologia, 2000, 43, 673-680.
  • 50. Sparso T., Hussain M.S., Andersen G.: Relationships between the functional PPA-Ralpha Leul62Val polymorphism and obesity, type 2 diabetes, dyslipidaemia, and related quantitative traits in studies of 5799 middle-aged white people. Mol. Genet. Metab., 2007, 90, 205-209.
  • 51. Rudkowska L., Yerreault M., Barbier O., et al.: Differences in transcriptional activation by the two allelic (L162Y Polymorphic) variants of PPARalpha after omega-3 fatty acids treatment. PPAR. Res., 2009, 369-372.
  • 52. Tai E.S., Corella D., Demissie S.: Polyunsaturated fatty acids interact with the PPARAL162V polymorphism to affect plasma triglyceride and apolipoprotein C-III concentrations in the Framingham Heart Study. J. Nutr., 2005, 135, 397-403.
  • 53. Paradis A.M., Fontain-Bisson B., Bosse Y: The peroxisome proliferator-activated receptor alpha Leul62Val polymorphism influences the metabolic response to a dietary intervention altering fatty acid proportions in healthy men. Am. J. Clin. Nutr., 2005, 81, 523-530.
  • 54. Polonis K., Hoffmann M., Narkiewicz K.: Wpływ wybranych czynników genetycznych na wczesne powikłania nadciśnienia tętniczego. Arterial Hypertension, 2011, 15, 2,125-142.
  • 55. Singh P.P., Singh M., Mastana S.S.: Genetic variation of apolipoproteins in North Indians. Hum. Biol., 2002, 74, 5, 673-682.
  • 56. Mahley R.W.: Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science, 1988, 240, 622-630.
  • 57. Abu M., Weis S.S., Jones P.J.: Cholesterol-lowering effect of plant sterols. Curr. Atheroscler. Rep., 2008, 10, 467-472.
  • 58. Kimura H., Gejyo F., Suzuki S., et al.: The C677T methylenetetrahydrofolate reductase gene mutation in hemodialysis patients. J. Am. Soc. Nephrol., 2000, 11, 885-893.
  • 59. Födinger M., Mannhalter C., Wölfi C., et al.: Mutation (677C to T) in the methlenetetrahydrofolate reductase gene aggravates hyperhomocysteinemia in hemodialysis patients. Kidney Int., 1997, 52, 517-523.
  • 60. Cashman K.D.: Homocysteine and osteoporotic fracture risk: a potential role for B vitamin, Nutr. Rev., 2005, 63, 1, 29-36.
  • 61. Shaw G.M., Carmichael S.L., Yang W: Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am. J. Epidemiol., 2004, 160, 102-109.
  • 62. Busby M.G., Fischer L., da Costa K.A., et al.: Choline- and betaine-defined diets for use in clinical research and for the management of trimethylaminuria. J. Am. Diet. Assoc., 2004, 104, 1836-1845.
  • 63. da Costa K.A., Badea M., Fischer L.M., et al.: Elevated serum creatine phosphokinase in choline-deficient humans: mechanistic studies in C2C12 mouse myoblasts. Am. J. Clin. Nutr., 2004, 80, 163-170.
  • 64. da Costa K.A., Gaffney C.E., Fischer L.M., et al.: Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. Am. J. Clin. Nutr., 2005, 81, 440-444.
  • 65. da Costa K., Kozyreva O.G., Song J., et al.: Common genetic polymorphisms have major effects on the human requirement for the nutrient choline. FASEB J., 2006, 20, 1336-1344.
  • 66. Kohlmeier M., da Costa K.A., Fischer L.M., et al.: Genetic variation of folate-mediated one-carbon transfer pathway predicts susceptibility to choline deficiency in humans. Proc. Natl. Acad. Sci. USA, 2005, 102, 16025-16030.
  • 67. Zeisel S.H.: The supply of choline is important for fetal progenitor cells. Semin. Cell. Dev. Biol., 2011, 22, 6, 624-628.
  • 68. Brody L.C., Conley M., Cox C., et al.: A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: report of the Birth Defects Research Group. Am. J. Hum. Genet., 2002, 71, 1207-1215.
  • 69. Martin R.C.G., Ahn J., Nowell S.A., et al. Association between manganese superoxide dismutase promoter gene polymorphism and breast cancer survival. Breast Cancer Research. 2006, 8, 4, http://breast-cancer-research.eom/content/8/4/R45.
  • 70. Li H., Kantoff P.W., Giovannucci E., et al.: Manganese superoxide dismutase polymorphism, prediagnostic antioxidant status, and risk of clinical significant prostate cancer. Cancer. Res., 2005, 65, 2498-24504.
  • 71. Cai Q., Shu, X.O., Wen W., et al.: Genetic polymorphism in the manganese superoxide dismutase gene, antioxidant intake, and breast cancer risk: results from the Shanghai Breast Cancer Study. Breast. Cancer. Res., 2004, 6, 647-655.
  • 72. Lavender N.A., Benford M.L., VanCleave T.T., et al.: Examination of polymorphic glutathione S-transferase (GST) genes, tobacco smoking and prostate cancer risk among Men of African Descent: A case-control study. BMC Cancer, 2009, 9, 397.
  • 73. Seow A., Yuan J.M., Sun C.L., et al.: Dietary isothiocyanates, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study Carcinogenesis, 2002, 23,12, 2055-2061.
  • 74. Joseph M.A., Moysich K.B., Freudenheim J.L., et al.: Cruciferous vegetables, genetic polymorphisms in glutathione S-transferases M1 and T1, and prostate cancer risk. Nutr. Cancer., 2004, 50, 2, 206-213.
  • 75. Santos B.R., Mascarenhas L.P.G., Satler F., et al.: Vitamin D deficiency in girls from South Brazil: a cross-sectional study on prevalence and association with vitamin D receptor gene variants. BMC Pediatrics, 2012, 12, 62-75.
  • 76. Seremak-Mrozikiewicz A., Drews K.: Genetyczne czynniki ryzyka osteoporozy - polimorfizm genu receptora witaminy D. Ginekol. Pol., 2004, 75, 5 404-411.
  • 78. Russo G.: Home health tests are ‘genetic horoscopes’. Nature, 2006, 3, 442, 7102, 497.
  • 79. Joost H.G., Gibney M.J., Cashman K.D.: Personalised nutrition: status and perspectives. BJN, 2007, 98, 01, 26-31.
  • 80. Food4me Project: www.food4me.org

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-534577d8-0669-4f5c-95b1-507d402bbd03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.