PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 09 |

Tytuł artykułu

Role of glutathione and glutathione S-transferase in lead tolerance and bioaccumulation by Dodonaea viscosa (L.) Jacq

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Glutathione (GSH) plays a central role in the plant tolerance against the toxic effects of metals. It is a key antioxidant and acts as a cofactor for glutathione S-transferase (GST). The main objective of this study was to determine the Pb tolerance and bioaccumulation by Dodonaea viscosa (L.) Jacq. and their relation to GSH production and GST activity. The relationship between the Pb tolerance and bioaccumulation by D. viscosa and the effect of the exposure time on the GSH production or the GST activity was assessed in trials with perlite under different Pb treatments. D. viscosa showed a remarkable tolerance to Pb [half-inhibitory concentration (IC₅₀) = 2,797 mg kg⁻¹] and accumulated up to 11,428 mg Pb kg⁻¹ in dry roots with a limited translocation to shoots without any signs of phytotoxicity after 105 days of exposure. The stress caused by the fast Pb uptake rate (489 mg kg⁻¹ day⁻¹) during the first 10 days of exposure was strongly correlated to increased GSH contents (~1.3-fold) and GST activities (~3.6-fold) in both shoots and roots. The results indicate that the Pb stress triggered a defense mechanism that involved increased contents of GSH and GST activities, suggesting that both variables are involved in the tolerance of D. viscosa against Pb toxicity.

Wydawca

-

Rocznik

Tom

36

Numer

09

Opis fizyczny

p.2501-2510,fig.,ref.

Twórcy

  • Departamento de Biotecnologia, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col.Vicentina, 09340 Iztapalapa, DF, Mexico
  • Departamento de Biotecnologia, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col.Vicentina, 09340 Iztapalapa, DF, Mexico
  • Departamento de Ciencias de la Salud, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col.Vicentina, 09340 Iztapalapa, DF, Mexico
  • Departamento de Biotecnologia, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col.Vicentina, 09340 Iztapalapa, DF, Mexico

Bibliografia

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plant’s responses to toxic metals and metalloids—A review. Environ Exp Bot 75:307–324
  • Audet P, Charest C (2007) Heavy metal phytoremediation from a meta-analytical perspective. Environ Pollut 147:231–237
  • Baranowska-Morek A, Wierzbicka M (2004) Localization of lead in root tip of Dianthus carthusianorum. Acta Biol Cracov Ser Bot 46:45–56
  • Brunner I, Luster J, Günthardt-Goerg MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152:559–568
  • Chaffai R, Koyama H (2011) Heavy metal tolerance in Arabidopsis thaliana. Adv Bot Res 60:1–49
  • Estrella-Gómez NE, Sauri-Duch E, Zapata-Pérez O, Santamaría JM (2012) Glutathione plays a role in protecting leaves of Salvinia minima from Pb²⁺ damage associated with changes in the expression of SmGS genes and increased activity of GS. Environ Exp Bot 75:188–194
  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930
  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212
  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20:2150–2161
  • Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405
  • Halušková L, Valentovičová K, Huttová J, Mistrík I, Tamás L (2009) Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol Biochem 47:1069–1074
  • Ho WM, Ang LH, Lee DK (2008) Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings. J Environ Sci 20:1341–1347
  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37
  • Jarvis MD, Leung DWM (2001) Chelated lead transport in Chamaecytisus proliferus (L.f.) link ssp. proliferus var. palmensis (H. Christ): an ultrastructural study. Plant Sci 161:433–441
  • Klassen SP, McLean JE, Grossl PR, Sims R (2000) Heavy metals in the environment. Fate and behavior of lead in soils planted with metal-resistant species (river birch and smallwing sedge). J Environ Qual 29:1826–1834
  • Liu D, Zou J, Meng Q, Zou J, Jiang W (2009) Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 18:134–143
  • Maldonado A, Favela-Torres E, Rivera-Cabrera F, Volke-Sepulveda T (2011) Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production. Plant Soil 339:377–389
  • Marmiroli M, Antonioli G, Maestri E, Marmiroli N (2005) Evidence of the involvement of plant ligno-cellulosic structure in the sequestration of Pb: an X-ray spectroscopy-based analysis. Environ Pollut 134:217–227
  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158
  • Mench M, Schwitzguébel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900
  • Meyer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86:435–457
  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65: 1027–1039
  • Naumann B, Eberius M, Appenroth KJ (2007) Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. J Plant Physiol 164:1656–1664
  • Ovečka M, Takáč T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86
  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162
  • Ramakrishna B, Rao SSR (2013) Preliminary studies on the involvement of glutathione metabolism and redox status against zinc toxicity in radish seedlings by 28-Homobrassinolide. Environ Exp Bot 96:52–58
  • Reddy AM, Kumar GG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104
  • Rojas-Loria CC, Peralta-Perez MR, Buendia-Gonzalez L, Volke-Sepulveda TL (2012) Effect of a saprophytic fungus on the growth and the lead uptake, translocation and immobilization in Dodonaea viscosa. Int J Phytorem 14:518–529
  • Sharma SS, Dietz KJ (2008) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50
  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52
  • Sun Q, Ye ZH, Wang XR, Wong MH (2005) Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator. Phytochemistry 66:2549–2556
  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179
  • Zhang C, Ge Y (2008) Response of glutathione and glutathione S-transferase in rice seedlings exposed to cadmium stress. Rice Sci 15:73–76
  • Zhang C, Wu Z, Ju T, Ge Y (2013) Purification and identification of glutathione S-transferase in rice root under cadmium stress. Rice Sci 20:173–178

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4f515492-0225-4eef-b18f-2ace45375947
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.