PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 3 |

Tytuł artykułu

Regulation by sucrose of storage compounds breakdown in germinating seeds of yellow lupine (Lupinus luteus L.), white lupine (Lupinus albus L.) and Andean lupine (Lupinus mutabilis Sweet). II. Mobilization of storage lipid

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Research of the regulatory function of sucrose in storage lipid breakdown was conducted on isolated embryo axes, excised cotyledons and whole seedlings of three lupine species grown in vitro on medium with 60 mM sucrose or without the sugar. Lack of sucrose in the medium caused significant increase in total lipid content in yellow, white and Andean lupine isolated embryo axes but in Andean lupine seedling cotyledons and excised cotyledons, lipid level was clearly lower in carbohydrates deficient conditions. Sucrose caused no significant effect on fatty acids spectra. The main fatty acid in yellow lupine seeds was linoleic acid, in white lupine oleic acid and in Andean lupine both oleic and linoleic acids. The main phospholipid in organs of three lupine species was phosphatidylcholine. In sugar-deficient conditions, content of phosphatidylcholine and some others phospholipids was decreased. The peculiar features of regulation by sugars of storage lipid breakdown in germinating lupine seeds and induction of autophagy in young carbohydrate starved embryo axes is discussed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

3

Opis fizyczny

p.1199-1206,fig.,ref.

Twórcy

autor
  • Department of Plant Physiology, Adam Mickiewicz University, Umultowska 89, 61-614 Poanan, Poland
autor
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
autor
  • Plant Breeding and Acclimatization Institute, Strzeszynska 36, 60-479 Poznan, Poland

Bibliografia

  • Allen CF, Good P, Davis HF, Chisum P, Fowler SD (1966) Methodology for the separation of plant lipids and application to spinach leaf and chloroplast lamellae. J Am Oil Chem Soc 43:223–230
  • Ames DN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118
  • Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J, Marty F, Douce R (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133:1251–1263
  • Bassham DC (2007) Plant autophagy—more than a starvation response. Curr Opinion Plant Biol 10:587–593
  • Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L (2008) Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. The Arabidopsis book. Am Soc Plant Biol. doi:10.1199/tab.0113
  • Borek S, Morkunas I, Ratajczak W, Ratajczak L (2001) Metabolism of amino acids in germinating yellow lupine seeds III. Breakdown of arginine in sugar-starved organs cultivated in vitro. Acta Physiol Plant 23:141–148
  • Borek S, Ratajczak W (2002) Sugars as a metabolic regulator of storage protein mobilization in germinating seeds of yellow lupine (Lupinus luteus L.). Acta Physiol Plant 24:425–434
  • Borek S, Ratajczak W, Ratajczak L (2003) A transfer of carbon atoms from fatty acids to sugars and amino acids in yellow lupine (Lupinus luteus L.) seedlings. J Plant Physiol 160:539–545
  • Borek S, Ratajczak W, Ratajczak L (2006) Ultrastructural and enzymatic research on the role of sucrose in mobilization of storage lipids in germinating yellow lupine seeds. Plant Sci 170:441–452
  • Borek S, Pukacka S, Michalski K, Ratajczak L (2009) Lipid and protein accumulation in developing seeds of three lupine species: Lupinus luteus L., Lupinus albus L., and Lupinus mutabilis Sweet. J Exp Bot 60:3453–3466
  • Borek S, Ratajczak L (2010) Storage lipids as a source of carbon skeletons for asparagine synthesis in germinating seeds of yellow lupine (Lupinus luteus L.). J Plant Physiol 167:717–724
  • Borek S, Kubala S, Kubala S, Ratajczak L (2011a) Comparative study of storage compound breakdown in germinating seeds of three lupine species. Acta Physiol Plant 33:1953–1968
  • Borek S, Kubala S, Kubala S (2011b) Regulation by sucrose of storage compounds breakdown in germinating seeds of yellow lupine (Lupinus luteus L.), white lupine (Lupinus albus L.) and Andean lupine (Lupinus mutabilis Sweet). I. Mobilization of storage protein. Acta Physiol Plant. doi:10.1007/s11738-011-0870-1
  • Borek S, Nuc K (2011) Sucrose controls storage lipid breakdown on gene expression level in germinating yellow lupine (Lupinus luteus L.) seeds. J Plant Physiol 168:1795–1803
  • Brouquisse R, James F, Rajmond P, Pradet A (1991) Study of glucose starvation in excised maize root tips. Plant Physiol 96:619–626
  • Cerletti P (1982) Lupin seeds proteins. In: Hudson BIF (ed) Development in food proteins. Applied Science Publisher LTD, pp 133–171
  • Dieuaide M, Brouquisse R, Pradet A, Raymond P (1992) Increased fatty acid b-oxidation after glucose starvation in maize root tips. Plant Physiol 99:595–600
  • Dieuaide M, Couée I, Pradet A, Raymond P (1993) Effects of glucose starvation on the oxidation of fatty acids by maize root tip mitochondria and peroxisomes: evidence for mitochondrial fatty acid b-oxidation and acyl-CoA dehydrogenase activity in higher plant. Biochem J 296:199–207
  • Duranti M, Consonni A, Magni C, Sessa F, Scarafoni A (2008) The major proteins of lupin seed: characterisation and molecular properties for use as functional and nutraceutical ingredients. Trends Food Sci Tech 19:624–633
  • Gonzali S, Loreti E, Solfanelli C, Novi G, Alpi A, Perata P (2006) Identification of sugar-modulated genes and evidence for in vivo sugar sensing in Arabidopsis. J Plant Res 119:115–123
  • Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142
  • Graham IA, Derby KJ, Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6:761–772
  • Hedley CL (2001) Grain legume carbohydrates. In: Hedley CL (ed) Carbohydrates in grain legume seeds: improving nutritional quality and agronomic characteristics. CAB International, Wallingford, pp 11–14
  • Heller R (1954) Recherches sur la nutrition minérale des tissus végétaux ciltivés in vitro. Annu Sci Nat Bot Biol Veg 14:1–223
  • Inoue Y, Moriyasu Y (2006) Autophagy is not a main contributor to the degradation of phospholipids in tobacco cells cultured under sucrose starvation conditions. Plant Cell Physiol 47:471–480
  • Li Y, Lee KK, Walsh S, Smith C, Hadingham S, Sorefan K, Cawley G, Bevan MW (2006) Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine. Genome Res 16:414–427
  • Mohamed AA, Rayas-Duarte P (1995) Composition of Lupinus albus. Cereal Chem 72:643–647
  • Morkunas I, Garnczarska M, Bednarski W, Ratajczak W, Waplak S (2003) Metabolic and ultrastructural responses of lupine embryo axes to sugar starvation. J Plant Physiol 160:311–319
  • Nichols BW, Harris RV, James AT (1965) The lipid metabolism of blue-green algae. Biochem Biophys Res Commun 20:256–262
  • Pukacka S (1991) Changes in membrane lipid components and antioxidant levels during natural ageing of seeds of Acer platanoides. Physiol Plant 82:306–310
  • Quettier AL, Eastmond PJ (2009) Storage oil hydrolysis during early seedling growth. Plant Physiol Biochem 47:485–490
  • Ratajczak W, Borek S, Podgórski A, Ratajczak L (1999) Variability of globulin composition in cultivars and individually tested seeds of yellow lupin (Lupinus luteus L.). Acta Physiol Plant 21: 413–417
  • Santos CN, Ferreira RB, Teixeira AR (1997) Seeds proteins of Lupinus mutabilis. J Agric Food Chem 45:3821–3825
  • Smeekens S, Jingkun M, Johannes H, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:274–279
  • Thomas BR, Rodriquez R (1994) Metabolite signal regulate gene expression and source/sink relations in cereal seedlings. Plant Physiol 106:1235–1239
  • Thompson AR, Vierstra RD (2005) Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol 8:165–173
  • To JPC, Reiter WD, Gibson SI (2002) Mobilization of seed storage lipid by Arabidopsis seedlings is retarded in the presence of exogenous sugars. BMC Plant Biol 2:4
  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279
  • Yu SM (1999) Cellular and genetic responses of plants to sugar starvation. Plant Physiol 121:687–693
  • Zhou S, Zhang D, Luan H, Yu F, Xin X, Hu G (2006) Primary study on protein and lipid accumulation in high oil content soybean varieties. Chin J Oil Crop Sci 28:214–216

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4ed85892-d3c3-43a3-9357-21651be6928f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.