PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 63 | 2 |

Tytuł artykułu

Hygiene pests as vectors for parasitic and bacterial diseases in humans

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Diseases transmitted by hygiene pests remain a very serious problem in spite of fast developments in science and medicine. The present study focuses on pests carrying germs that pose a threat to human health and life. The quick pace of life, the need to satisfy human needs and mass production of food sometimes result in flagrant sanitary, hygienic and epidemiological deficiencies. These irregularities are conducive to hygiene pests, which, when not held in check by proper control measures, may act more efficiently and quickly.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

63

Numer

2

Opis fizyczny

p.81-97,ref.

Twórcy

  • Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
autor
  • Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
autor
  • Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland

Bibliografia

  • [1] Sheehan W.J., Rangsithienchai P.A., Wood R.A., Rivard D., Chinratanapisit S., Perzanowski M.S., Chew G.L., Seltzer J.M., Matsui E.C., Phipatanakul W. 2010. Pest and allergen exposure and abatement in inner-city asthma: a work group report of the American Academy of Allergy, Asthma & Immunology Indoor Allergy/Air Pollution Committee. The Journal of Allergy and Clinical Immunology 125: 575-581. doi:10.1016/j.jaci.2010.01.023
  • [2] Bogdanowicz W., Chudzicka E., Pilipiuk I., Skibińska E. 2007. Fauna Polski – charakterystyka i wykaz gatunków. T. II. Muzeum i Instytut Zoologii PAN, Warszawa: 142-143 (in Polish).
  • [3] Scott J.G., Warren W.C., Beukeboom L.W., Bopp D., Clark A.G., Giers S.D., Hediger M., Jones A.K., Kasai S., Leichter C.A., Li M., Meisel R.P., Minx P., Murphy T.D., Nelson D.R., Reid W.R., Rinkevich F.D., Robertson H.M., Sackton T.B., Sattelle D.B., Thibaud-Nissen F., Tomlinson C., van de Zande L., Walden K.K., Wilson R.K., Liu N. 2014. Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biology 15: 466. doi:10.1186/s13059-014-0466-3
  • [4] Muturi C.N., Ouma J.O., Malele I.I., Ngure R.M., Rutto J.J., Mithöfer K.M., Enyaru J., Masiga D.K. 2011. Tracking the feeding patterns of tsetse flies (Glossina genus) by analysis of bloodmeals using mitochondrial cytochromes genes. PLoS ONE 6: e17284. doi:10.1371/journal.pone.0017284
  • [5] Pagabeleguem S., Ravel S., Dicko A.H., Vreysen M.J., Parker A., Takac P., Huber K., Sidibé I., Gimonneau G., Bouyer J. 2016. Influence of temperature and relative humidity on survival and fecundity of three tsetse strains. Parasites & Vectors 9: 520. doi:10.1186/s13071-016-1805-x
  • [6] Franco J.R., Simarro P.P., Diarra A., Jannin J.G. 2014. Epidemiology of human African trypanosomiasis. Clinical Epidemiology 6: 257-275. doi:10.2147/CLEP.S39728
  • [7] Babokhov P., Sanyaolu A.O., Oyibo W.A., Fagbenro-Beyioku A.F., Iriemenam N.C. 2013. A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathogens and Global Health 107: 242-252. doi:10.1179/2047773213Y.0000000105
  • [8] Seke Etet P.F., Fawzi Mahomoodally M. 2012. New insights in staging and chemotherapy of African trypanosomiasis and possible contribution of medicinal plants. The Scientific World Journal 2012:343652. doi:10.1100/2012/343652
  • [9] Akhoundi M., Kuhls K., Cannet A., Votýpka J., Marty P., Delaunay P., Sereno D. 2016. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Neglected Tropical Diseases 10: e0004349. doi:10.1371/journal.pntd.0004349
  • [10] González U., Pinart M., Sinclair D., Firooz A., Enk C., Vélez I.D., Esterhuizen T.M., Tristan M., Alvar J. 2015. Vector and reservoir control for preventing leishmaniasis. The Cochrane Database of Systematic Reviews 8: 1-101. doi:10.1002/14651858.CD008736.pub2
  • [11] Monge-Maillo B., Norman F.F., Cruz I., Alvar J., López-Vélez R. 2014. Visceral leishmaniasis and HIV coinfection in the mediterranean region. PLoS Neglected Tropical Diseases 8: e3021. doi:10.1371/journal.pntd.0003021
  • [12] Pons M.J., Gomes C., del Valle-Mendoza J., Ruiz J. 2016. Carrion’s disease: more than a sand flyvectored illness. PLoS Pathogens 12: e1005863. doi:10.1371/journal.ppat.1005863
  • [13] Ikegami T., Makino S. 2011.The pathogenesis of Rift valley fever. Viruses 3: 493-519. doi:10.3390/v3050493
  • [14] Wegner E. 2009. The characteristics of the most troublesome mosquito species (Diptera: Culicidae) in Poland. Fragmenta Faunistica 53: 157-179. doi:10.3161/00159301FF2009.52.2.157
  • [15] Gaio A.O., Gusmão D.S., Santos A.V., Berbert-Molina M.A., Pimenta P.F., Lemos F.J. 2011. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera: Culicidae) (L.). Parasites & Vectors 4: 105. doi:10.1186/1756-3305-4-105
  • [16] Cummins B., Cortez R., Foppa I.M., Walbeck J., Hyman J.M. 2012. A spatial model of mosquito hostseeking behavior. PLoS Computational Biology. 8: e1002500. doi:10.1371/journal.pcbi.1002500
  • [17] Smallegange R.C., Qiu Y.T., Bukovinszkiné-Kiss G., Van Loon J.J.A., Takken W. 2009. The effect of aliphatic carboxylic acids on olfaction-based hostseeking of the Malaria mosquito Anopheles gambiae sensu stricto. Journal of Chemical Ecology 35: 933- 943. doi:10.1007/s10886-009-9668-7
  • [18] Shirai Y., Funada H., Seki T., Morohashi M., Kamimura K. 2004. Landing preference of Aedes albopictus (Diptera: Culicidae) on human skin among ABO blood groups, secretors or nonsecretors, and ABH antigens. Journal of Medical Entomology 41: 796-799.
  • [19] Davis E.E., Bowen M.F. 1994. Sensory physiological basis for attraction in mosquitoes. Journal of the American Mosquito Control Association 10: 316-325.
  • [20] Riedl J., Mordmüller B., Koder S., Pabinger I., Kremsner P.G., Hoffman S.L., Ramharter M., Ay C. 2016. Alterations of blood coagulation in controlled human malaria infection. Malaria Journal 15: 15. doi:10.1186/s12936-015-1079-3
  • [21] De Abreu F.V.S., Morais M.M., Ribeiro S.P., Eiras Á.E. 2015. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti. Memórias do Instituto Oswaldo Cruz 110: 669-676. doi:10.1590/0074-02760140490
  • [22] Kraemer M.U., Sinka M.E., Duda K.A., Mylne A.Q., Shearer F.M., Barker C.M., Moore C.G., Carvalho R.G., Coelho G.E., van Bortel W., Hendrickx G., Schaffner F., Elyazar I.R., Teng H.J., Brady O.J., Messina J.P., Pigott D.M., Scott T.W., Smith D.L., Wint G.R., Golding N., Hay S. 2015. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4: e08347.doi:10.7554/eLife.08347
  • [23] Gardner C.L., Ryman K.D. 2010. Yellow fever: a reemerging threat. Clinics in Laboratory Medicine 30: 237-260. doi:10.1016/j.cll.2010.01.001
  • [24] Gotuzzo E., Yactayo S., Córdova E. 2013. Efficacy and duration of immunity after Yellow fever vaccination: systematic review on the need for a booster every 10 years. The American Journal of Tropical Medicine and Hygiene 89: 434-444. doi:10.4269/ajtmh.13-0264
  • [25] Lum L., Ng C., Khoo E. 2014. Managing dengue fever in primary care: A practical approach. Malaysian Family Physician: the Official Journal of the Academy of Family Physicians of Malaysia 9: 2-10.
  • [26] Carabali M., Hernandez L.M., Arauz M.J., Villar L.A., Ridde V. 2015. Why are people with dengue dying? A scoping review of determinants for dengue mortality. BMC Infectious Diseases 15: 301. doi:10.1186/s12879-015-1058-x
  • [27] Kim H., Cha G.W., Jeong Y.E., Lee W.G., Chang K.S., Roh J.Y., Yang S.C., Park M.Y., Park C., Shin E.H. 2015. Detection of Japanese encephalitis virus genotype V in Culex orientalis and Culex pipiens (Diptera: Culicidae) in Korea. PLoS ONE 10: e0116547. doi:10.1371/journal.pone.0116547
  • [28] Wang H., Liang G. 2015. Epidemiology of Japanese encephalitis: past, present, and future prospects. Therapeutics and Clinical Risk Management 11: 435-448. doi:10.2147/TCRM.S51168
  • [29] Yun S.I., Lee Y.M. 2014. Japanese encephalitis: The virus and vaccines. Human Vaccines & Immunotherapeutics 10: 263-279. doi:10.4161/hv.26902
  • [30] Şuleşco T., von Thien H., Toderaş L., Toderaş I., Lühken R., Tannich E. 2016. Circulation of Dirofilaria repens and Dirofilaria immitis in Moldova. Parasites & Vectors 9: 627. doi:10.1186/s13071-016-1916-4
  • [31] Borkowski P.K., Rymkiewicz G., Golebiewska J., Nestoros N., Romejko-Jarosinska J., Zarnowska-Prymek H., Masny A., Palucki J., Cielecka D. 2015. The first case of human autochtonous subconjunctival dirofilariosis in Poland and MALT lymphoma as possible consequence of this parasitosis. Infectious Agents and Cancer 10: 1. doi:10.1186/1750-9378-10-1
  • [32] Simón F., Siles-Lucas M., Morchón R., González-Miguel J., Mellado I., Carretón E., Montoya-Alonso J.A. 2012. Human and animal dirofilariasis: the emergence of a zoonotic mosaic. Clinical Microbiology Reviews 25: 507-544. doi:10.1128/CMR.00012-12
  • [33] Kar N.P., Kumar A., Singh O.P., Carlton J.M., Nanda N. 2014. A review of malaria transmission dynamics in forest ecosystems. Parasites & Vectors 7: 265. doi:10.1186/1756-3305-7-265
  • [34] Walczak A. 2014. About the needs of anti-malarial prophylactics among Polish travelers. Problemy Higieny i Epidemiologii 95: 1-5 (in Polish with summary in English).
  • [35] Zwiebel L.J., Takken W. 2004. Olfactory regulation of mosquito–host interactions. Insect Biochemistry and Molecular Biology 34: 645-652. doi:10.1016/j.ibmb.2004.03.017
  • [36] Mishra S.K., Newton C.R.J.C. 2009. Diagnosis and management of the neurological complications of falciparum malaria. Nature Reviews Neurology 5: 189-198. doi:10.1038/nrneurol.2009.23
  • [37] Wang Y., Chen J., Jiang L.Y., Qiao G.X. 2015. Hemipteran mitochondrial genomes: features, structures and implications for phylogeny. Tikkanen R, ed. International Journal of Molecular Sciences 16: 12382-12404. doi:10.3390/ijms160612382
  • [38] Doggett S.L., Dwyer D.E., Peñas P.F., Russell R.C. 2012. Bed bugs: clinical relevance and control options. Clinical Microbiology Reviews 25: 164-192. doi:10.1128/CMR.05015-11
  • [39] Delaunay P., Blanc V., Del Giudice P., Levy-Bencheton A., Chosidow O., Marty P., Brouqui P. 2011. Bedbugs and infectious diseases. Clinical Infectious Diseases 52: 200-210. doi:10.1093/cid/ciq102
  • [40] Lowe C.F., Romney M.G. 2011. Bedbugs as vectors for drug-resistant bacteria. Emerging Infectious Diseases 17: 1132-1134. doi:10.3201/eid1706.101978
  • [41] Andrade D.V., Gollob K.J., Dutra W.O. 2014. Acute Chagas disease: new global challenges for an old neglected disease. PLoS Neglected Tropical Diseases 8: e3010. doi:10.1371/journal.pntd.0003010
  • [42] Teixeira A.R.L., Hecht M.M., Guimaro M.C., Sousa A.O., Nitz N. 2011. Pathogenesis of Chagas’ disease: parasite persistence and autoimmunity. Clinical Microbiology Reviews 24: 592-630. doi:10.1128/CMR.00063-10
  • [43] Angheben A., Boix L., Buonfrate D., Gobbi F., Bisoffi Z., Pupella S., Gandini G., Aprili G. 2015. Chagas disease and transfusion medicine: a perspective from non-endemic countries. Blood Transfusion 13: 540-550. doi:10.2450/2015.0040-15
  • [44] Hashimoto K., Schofield C.J. 2012. Elimination of Rhodnius prolixus in Central America. Parasites & Vectors 5: 45. doi:10.1186/1756-3305-5-45
  • [45] da Nóbrega A.A., de Araújo W.N., Vasconcelos A.M. 2014. Mortality due to Chagas disease in Brazil according to a specific cause. The American Journal of Tropical Medicine and Hygiene 91: 528-533. doi: 10.4269/ajtmh.13-0574
  • [46] Gliniewicz A., Krzemińska A., Sawicka B. 1996. Susceptibility of cockroaches Blattella germanica L. collected from hospitals to selected pyrethroid and carbamate insecticides. Roczniki Państwowego Zakładu Higieny 47: 333-341.
  • [47] Moges F., Eshetie S., Endris M., Huruy K., Muluye D., Feleke T., Silassie F., Ayalew G., Nagappan R. 2016. Cockroaches as a source of high bacterial pathogens with multidrug resistant strains in Gondar Town, Ethiopia. BioMed Research International 2016: 2825056. doi:10.1155/2016/2825056
  • [48] Anderson M., Sansonetti P.J., Marteyn B.S. 2016. Shigella diversity and changing landscape: insights for the twenty-first century. Frontiers in Cellular and Infection Microbiology 6: 45. doi:10.3389/fcimb.2016.00045
  • [49] Talukder K.A., Islam M.A., Khajanchi B.K., Dutta D.K., Islam Z., Safa A., Alam K., Hossain A., Nair G.B., Sack D.A. 2003. Temporal shifts in the dominance of serotypes of Shigella dysenteriae from 1999 to 2002 in Dhaka, Bangladesh. Journal of Clinical Microbiology 41: 5053-5058. doi:10.1128/JCM.41.11.5053-5058.2003
  • [50] Dandekar T., Fieselmann A., Fischer E., Popp J., Hensel M., Noster J. 2014. Salmonella - how a metabolic generalist adopts an intracellular lifestyle during infection. Frontiers in Cellular and Infection Microbiology 4: 191. doi:10.3389/fcimb.2014.00191
  • [51] Cianflone N.F.C. 2008. Salmonellosis and the GI tract: more than just peanut butter. Current Gastroenterology Reports 10: 424-431.
  • [52] van den Pol A.N. 2013. Polio, still lurking in the shadows. The Journal of Neuroscience 33: 855-862. doi:10.1523/JNEUROSCI.2861-12.2013
  • [53] Romigi A., Maestri M. 2014. Circadian fatigue or unrecognized restless legs syndrome? The post-polio syndrome model. Frontiers in Neurology 5: 115. doi:10.3389/fneur.2014.00115
  • [54] Huang X.Z., Tall B., Schwan W.R., Kopecko D.J. 1998. Physical limitations on Salmonella typhi entry into cultured human intestinal epithelial cells. Infection and Immunity 66: 2928-2937.
  • [55] Jorge J.F., Costa A.B.V., Rodrigues J.L.N., Girão E.S., Luiz R.S., Sousa A.Q., Moore S.R., Menezes D.B., Leitão T.M. 2014. Salmonella typhi liver abscess overlying a metastatic melanoma. The American Journal of Tropical Medicine and Hygiene 90: 716-718. doi:10.4269/ajtmh.13-0573
  • [56] Dobler G., Pfeffer M. 2011. Fleas as parasites of the family Canidae. Parasites and Vectors 4: 139. doi:10.1186/1756-3305-4-139
  • [57] Qin G., Hu X., Cebe P., Kaplan D.L. 2012. Mechanism of resoling elasticity. Nature Communications. 3: 1003. doi:10.1038/ncomms2004
  • [58] Opavsky M.A. 1997. Cat scratch disease: The story continues. The Canadian Journal of Infectious Diseases 8: 43-49.
  • [59] Rolain J.M., Lepidi H., Zanaret M., Triglia J.M., Michel G., Thomas P.A., Texereau M., Stein A., Romaru A., Eb F., Raoult D. 2006. Lymph node biopsy specimens and diagnosis of cat-scratch disease. Emerging Infectious Diseases 12: 1338-1344. doi:10.3201/eid1209.060122
  • [60] Mazur-Melewska K., Mania A., Kemnitz P., Figlerowicz M., Służewski W. 2015. Cat-scratch disease: a wide spectrum of clinical pictures. Advances in Dermatology and Allergology 32: 216-220. doi:10.5114/pdia.2014.44014
  • [61] Gürcan Ş. 2014. Epidemiology of tularemia. Balkan Medical Journal 31: 3-10. doi:10.5152/balkanmedj.2014.13117
  • [62] Skyberg J.A. 2013. Immunotherapy for tularemia. Virulence 4: 859-870. doi:10.4161/viru.25454
  • [63] Osterloh A., Papp S., Moderzynski K., Kuehl S., Richardt U., Fleischer B. 2016. Persisting Rickettsia typhi causes fatal central nervous system inflammation. Infection and Immunity 84: 1615-1632. doi:10.1128/IAI.00034-16
  • [64] Radulovic S., Price P.W., Beier M.S., Gaywee J., Macaluso J.A., Azad A. 2002. Rickettsia-macrophage interactions: host cell responses to Rickettsia akari and Rickettsia typhi. Infection and Immunity 70: 2576-2582. doi:10.1128/IAI.70.5.2576-2582.2002
  • [65] Sentongo E., Wabinga H. 2014. Tungiasis presenting as a soft tissue oral lesion. BMC Oral Health 14: 112. doi:10.1186/1472-6831-14-112
  • [66] Feldmeier H., Heukelbach J., Ugbomoiko U.S., Sentongo E., Mbabazi P., von Samson-Himmelstjerna G., Krantz I. 2014. Tungiasis – a neglected disease with many challenges for Global Public Health. PLoS Neglected Tropical Diseases 8: e3133. doi:10.1371/journal.pntd.0003133
  • [67] Neerinckx S.B., Peterson A.T., Gulinck H., Deckers J., Leirs H. 2008. Geographic distribution and ecological niche of plague in sub-Saharan Africa. International Journal of Health Geographic 7: 54. doi:10.1186/1476-072X-7-54
  • [68] Eisen R.J., MacMillan K., Atiku L.A, Mpanga J.T., Zielinski-Gutierrez E., Graham C.B., Boegler K.A., Enscore R.E., Gage K.L. 2014. Identification of risk factors for plague in the West Nile Region of Uganda. The American Journal of Tropical Medicine and Hygiene 90: 1047-1058. doi:10.4269/ajtmh.14-0035
  • [69] Li Y., Li D., Shao H., Li H., Han Y. 2016. Plague in China 2014 - all sporadic case report of pneumonic plague. BMC Infectious Diseases 16: 85. doi:10.1186/s12879-016-1403-8
  • [70] Pradel E., Lemaître N., Merchez M., Ricard I., Reboul A., Dewitte A., Sebbane F. 2014. New insights into how Yersinia pestis adapts to its mammalian host during bubonic plague. PLoS Pathogens 10: e1004029. doi:10.1371/journal.ppat.1004029
  • [71] Josens R., Sola F.J., Marchisio N., Di Renzo M.A., Giacometti A. 2014. Knowing the enemy: ant behavior and control in a pediatric hospital of Buenos Aires. Springer Plus 3: 229. doi:10.1186/2193-1801-3-229
  • [72] Wetterer J.K. 2010. Worldwide spread of the pharaoh ant, Monomorium pharaonis (Hymenoptera: Formicidae). Myrmecological News 13: 115-129.
  • [73] Lovewell R.R., Patankar Y.R., Berwin B. 2014. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. American Journal of Physiology – Lung Cellular and Molecular Physiology 306: L591-L603. doi:10.1152/ajplung.00335.2013
  • [74] Méric G., Miragaia M., de Been M., Yahara K., Pascoe B., Mageiros L., Mikhail J., Harris L.G., Wilkinson T.S., Rolo J., Lamble S., Bray J.E., Jolley K.A., Hanage W.P., Bowden R., Maiden M.C., Mack D., de Lencastre H., Feil E.J., Corander J., Sheppard S.K. 2015. Ecological overlap and horizontal gene transfer in Staphylococcus aureus and Staphylococcus epidermidis. Genome Biology and Evolution 7: 1313-1328. doi:10.1093/gbe/evv066
  • [75] Broberg C.A., Palacios M., Miller V.L. 2014. Klebsiella: a long way to go towards understanding this enigmatic jet-setter. Prime Reports 6: 64. doi:10.12703/P6-64
  • [76] Eremeeva M.E., Dasch G.A. 2015. Challenges posed by tick-borne rickettsiae: eco-epidemiology and public health implications. Frontiers in Public Health 3: 55. doi:10.3389/fpubh.2015.00055
  • [77] Parola P., Paddock C.D., Socolovschi C., Labruna M.B., Mediannikov O., Kernif T., Abdad M.Y., Stenos J., Bitam I., Fournier P.E., Raoult D. 2013. Update on tick-borne rickettsioses around the world: a geographic approach. Clinical Microbiology Reviews 26: 657-702. doi:10.1128/CMR.00032-13
  • [78] Rovery C., Brouqui P., Raoult D. 2008. Questions on Mediterranean spotted fever a century after its discovery. Emerging Infectious Diseases 14: 1360-1367. doi:10.3201/eid1409.071133
  • [79] Meriläinen L., Herranen A., Schwarzbach A., Gilbert L. 2015. Morphological and biochemical features of Borrelia burgdorferi pleomorphic forms. Microbiology 161: 516-527. doi:10.1099/mic.0.000027
  • [80] Bunikis I., Denker K., Östberg Y., Andersen C., Benz R., Bergström S. 2008. An RND-type efflux system in Borrelia burgdorferi is involved in virulence and resistance to antimicrobial compounds. PLoS Pathogens 4: e1000009. doi:10.1371/journal.ppat.1000009
  • [81] Kung F., Anguita J., Pal U. 2013. Borrelia burgdorferi and tick proteins supporting pathogen persistence in the vector. Future Microbiology 8: 41-56. doi:10.2217/fmb.12.121
  • [82] Lantos P.M. 2015. Chronic Lyme disease. Infectious Disease Clinics Of North America 29: 325-340. doi:10.1016/j.idc.2015.02.006
  • [83] Birge J., Sonnesyn S. 2012 Powassan virus encephalitis, Minnesota, USA. Emerging Infectious Diseases 18: 1669-1671. doi:10.3201/eid1810.120621
  • [84] Amicizia D., Domnich A., Panatto D., Lai P.L., Cristina M.L., Avio U., Gasparini R. 2013. Epidemiology of tick-borne encephalitis (TBE) in Europe and its prevention by available vaccines. Human Vaccines & Immunotherapeutics 9: 1163-1171. doi:10.4161/hv.23802
  • [85] Usmani-Brown S., Halperin J.J., Krause P.J. 2013. Neurological manifestations of human babesiosis. Handbook of Clinical Neurology 114: 199-203. doi:10.1016/B978-0-444-53490-3.00014-5
  • [86] Skotarczak B. 2007. Babeszjoza człowieka i psa domowego; etiologia, chorobotwórczość, diagnostyka. Wiadomości Parazytologiczne 53: 271-280 (in Polish with summary in English).
  • [87] Johnson S.T., Cable R.G., Tonnetti L., Spencer B., Rios J., Leiby D.A. 2009. Seroprevalence of Babesia microti in blood donors from Babesia-endemic areas of the northeastern United States: 2000 through 2007. Transfusion 49: 2574-2582. doi:10.1111/j.1537-2995.2009.02430.x
  • [88] Wiedemann A., Virlogeux-Payant I., Chaussé A.M., Schikora A., Velge P. 2014. Interactions of Salmonella with animals and plants. Frontiers in Microbiology 5: 791. doi:10.3389/fmicb.2014.00791
  • [89] Foley S.L., Johnson T.J., Ricke S.C., Nayak R., Danzeisen J. 2013. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiology and Molecular Biology Reviews 77: 582-607. doi:10.1128/MMBR.00015-13
  • [90] Zheng J., Allard S., Reynolds S., Millner P., Arce G., Blodgett R.J., Brown E.W. 2013. Colonization and internalization of Salmonella enterica in tomato plants. Applied and Environmental Microbiology 79: 2494-2502. doi:10.1128/AEM.03704-12
  • [91] Crump J.A., Sjölund-Karlsson M., Gordon M.A., Parry C.M. 2015. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clinical Microbiology Reviews 28: 901-937. doi:10.1128/CMR.00002-15
  • [92] Epps S.V.R., Harvey R.B., Hume M.E., Phillips T.D., Anderson R.C., Nisbet D.J. 2013. Foodborne campylobacter: infections, metabolism, pathogenesis and reservoirs. International Journal of Environmental Research and Public Health 10: 6292-6304. doi:10.3390/ijerph10126292
  • [93] Whiley H., van den Akker B., Giglio S., Bentham R. 2013. The role of environmental reservoirs in human campylobacteriosis. International Journal of Environmental Research and Public Health 10: 5886-5907. doi:10.3390/ijerph10115886
  • [94] Janssen R., Krogfelt K.A., Cawthraw S.A., van Pelt W., Wagenaar J.A., Owen R.J. 2008. Host-pathogen interactions in Campylobacter infections: the host perspective. Clinical Microbiology Reviews 21: 505-518. doi:10.1128/CMR.00055-07
  • [95] Dhama K., Mahendran M., Tiwari R., Dayal Singh S., Kumar D., Singh S., Sawant P.M. 2011. Tuberculosis in birds: insights into the Mycobacterium avium infections. Veterinary Medicine International 2011: 712369. doi:10.4061/2011/712369
  • [96] Śmigielska M. 2010. Zoonozy przenoszone przez ptaki wolno żyjące. Ornis Polonica 51: 149-162 (in Polish with summary in English).
  • [97] Falkinham J.O., Hilborn E.D., Arduino M.J., Pruden A., Edwards M.A. 2015. Epidemiology and ecology of opportunistic premise plumbing pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. Environmental Health Perspectives 123: 749-758. doi:10.1289/ehp.1408692
  • [98] Neumann G., Kawaoka Y. 2015. Transmission of Influenza A viruses. Virology 479-480: 234-246. doi:10.1016/j.virol.2015.03.009
  • [99] Boseret G., Losson B., Mainil J.G., Thiry E., Saegerman C. 2013. Zoonoses in pet birds: review and perspectives. Veterinary Research 44: 36. doi:10.1186/1297-9716-44-36
  • [100] Jacob J.P., Gaskin J.M., Wilson H.R., Mather F.B. 2003. Avian diseases transmissible to humans. University of Florida IFAS Extension PS23.
  • [101] Morand S., Jittapalapong S., Kosoy M. 2015. Rodents as hosts of infectious diseases: biological and ecological characteristics. Vector Borne and Zoonotic Diseases 15: 1-2. doi:10.1089/vbz.2015.15.1.intro
  • [102] Franssen F.F., Fonville M., Takumi K., Vallée I., Grasset A., Koedam M.A., Wester P.W., Boireau P., van der Giessen J.W. 2011. Antibody response against Trichinella spiralis in experimentally infected rats is dose dependent. Veterinary Research 42: 113. doi:10.1186/1297-9716-42-113
  • [103] Gottstein B., Pozio E., Nöckler K. 2009. Epidemiology, diagnosis, treatment, and control of trichinellosis. Clinical Microbiology Reviews 22: 127-145. doi:10.1128/CMR.00026-08
  • [104] Murrell K.D., Pozio E. 2011. Worldwide occurrence and impact of human trichinellosis, 1986–2009. Emerging Infectious Diseases 17: 2194-2202. doi:10.3201/eid1712.110896.
  • [105] Akter R., Boland P., Daley P., Rahman P., Al Ghanim N. 2016. Rat bite fever resembling rheumatoid arthritis. The Canadian Journal of Infectious Diseases & Medical Microbiology 2016: 7270413. doi:10.1155/2016/7270413
  • [106] Glasman P.J., Thuraisingam A. 2009. Rat bite fever: a misnomer? BMJ Case Reports 2009: bcr04.2009.1795. doi:10.1136/bcr.04.2009.1795
  • [107] Elliott S.P. 2007. Rat bite fever and Streptobacillus moniliformis. Clinical Microbiology Reviews 20: 13-22. doi:10.1128/CMR.00016-06
  • [108] Fouts D.E., Matthias M.A., Adhikarla H., Adler B., Amorim-Santos L., Berg D.E., Bulach D., Buschiazzo A., Chang Y.F., Galloway R.L., Haake D.A., Haft D.H., Hartskeerl R., Ko A., Levett P.N., Matsunaga J., Mechaly A.E., Monk J.M., Nascimento A.L., Nelson K.E., Palsson B., Peacock S.J., Picardeau M., Ricaldi J.N., Thaipandungpanit J., Wunder E.A.Jr., Yang X.F., Zhang J.J., Vinetz J.M. 2016. What makes a bacterial species pathogenic?:Comparative genomic analysis of the genus Leptospira. PLoS Neglected Tropical Diseases 10: e0004403. doi:10.1371/journal.pntd.0004403
  • [109] Haake D.A., Levett P.N. 2015. Leptospirosis in humans. Current Topics in Microbiology and Immunology 387: 65-97. doi:10.1007/978-3-662-45059-8_5
  • [110] Arbiol J., Borja M., Yabe M., Nomura H., Gloriani N., Yoshida S. 2013. Valuing human leptospirosis prevention using the opportunity cost of labor. International Journal of Environmental Research and Public Health 10: 1845-1860. doi:10.3390/ijerph10051845
  • [111] Taylor A.J., Paris D.H., Newton P.N. 2015. A systematic review of the mortality from untreated leptospirosis. PLoS Neglected Tropical Diseases 9: e0003866. doi:10.1371/journal.pntd.0003866
  • [112] Karczewski G., Gołąb E. 2011. Problemy diagnostyki toksoplazmozy wrodzonej. Przegląd Epidemiologiczny 65: 451-454 (in Polish with summary in English).
  • [113] Hadaś E., Derda M. 2014. Pasożyty – zagrożenie nadal aktualne. Problemy Higieny i Epidemiologii 95: 6-13 (in Polish with summary in English).
  • [114] Nichols E., Rindge M.E., Russell G.G. 1953. The relationship of the habits of the house mouse and the mouse mite (Allodermanyssus sanguineous) to the spread of rickettsial pox. Transactions of the American Clinical and Climatological Association 64: 169-184.
  • [115] Perlman S.J., Hunter M.S., Zchori-Fein E. 2006. The emerging diversity of Rickettsia. Proceedings of the Royal Society B: Biological Sciences 273: 2097-2106. doi:10.1098/rspb.2006.3541

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4ea4317b-d848-4636-90fa-bd06b1736def
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.