PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 77 | 3 |

Tytuł artykułu

Endothelial expression of c-kit and CD68 in dental follicles of human impacted third molars

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Periodontal tissue remnants of odontogenesis constitute the dental follicle (DF) which is actually considered a stem niche in adults. However, potentialities of local endothelia within this niche seem overlooked. We thus aimed at testing the endothelial cells expression of c-kit, the progenitor cells marker, and CD68, commonly regarded as a monocyte/macrophage marker, in human DFs. Materials and methods: We performed an immunohistochemical study using these two markers which were applied on samples collected from ten adult patients. Results: The markers were positively expressed in endothelial cells, as well as in spindle-shaped stromal cells of the DF. Conclusions: The origin of DF stem or progenitor cells needs reviewing in the light of these findings, as endothelium could be a donor site for niche inhabitants. (Folia Morphol 2018; 77, 3: 485–488)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

77

Numer

3

Opis fizyczny

p.485–488,fig.,ref.

Twórcy

autor
  • Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
autor
  • Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
  • Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania

Bibliografia

  • 1. Broudy VC, Kovach NL, Bennett LG, et al. Human umbilical vein endothelial cells display high-affinity c-kit receptors and produce a soluble form of the c-kit receptor. Blood. 1994; 83(8): 2145–2152, indexed in Pubmed: 7512842.
  • 2. Carlile MJ, Sturrock MG, Chisholm DM, et al. The presence of pericytes and transitional cells in the vasculature of the human dental pulp: an ultrastructural study. Histochem J. 2000; 32(4): 239–245, indexed in Pubmed: 10872889.
  • 3. Didilescu AC, Pop F, Rusu MC. c-kit positive cells and networks in tooth germs of human midterm fetuses. Ann Anat. 2013; 195(6): 581–585, doi: 10.1016/j.aanat.2013.06.002, indexed in Pubmed: 23932767.
  • 4. Ding L, Saunders TL, Enikolopov G, et al. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012; 481(7382): 457–462, doi: 10.1038/nature10783, indexed in Pubmed: 22281595.
  • 5. Dziubińska P, Jaskólska M, Przyborowska P, et al. Stem cells in dentistry: review of literature. Pol J Vet Sci. 2013; 16(1): 135–140, indexed in Pubmed: 23691589.
  • 6. Fitzgerald M, Chiego DJ, Heys DR. Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth. Arch Oral Biol. 1990; 35(9): 707–715, indexed in Pubmed: 2091590.
  • 7. Gottfried E, Kunz-Schughart LA, Weber A, et al. Expression of CD68 in non-myeloid cell types. Scand J Immunol. 2008; 67(5): 453–463, doi: 10.1111/j.1365-3083.2008.02091.x, indexed in Pubmed: 18405323.
  • 8. Huang GTJ, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009; 88(9): 792–806, doi: 10.1177/0022034509340867, indexed in Pubmed: 19767575.
  • 9. Kémoun P, Laurencin-Dalicieux S, Rue J, et al. Localization of STRO-1, BMP-2/-3/-7, BMP receptors and phosphorylated Smad-1 during the formation of mouse periodontium. Tissue Cell. 2007; 39(4): 257–266, doi: 10.1016/j.tice.2007.06.001, indexed in Pubmed: 17662325.
  • 10. Kissa K, Herbomel P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature. 2010; 464(7285): 112–115, doi: 10.1038/nature08761, indexed in Pubmed: 20154732.
  • 11. La Rocca G, Anzalone R, Farina F. The expression of CD68 in human umbilical cord mesenchymal stem cells: new evidences of presence in non-myeloid cell types. Scand J Immunol. 2009; 70(2): 161–162, doi: 10.1111/j.1365-3083.2009.02283.x, indexed in Pubmed: 19630923.
  • 12. Laine M, Ventä I, Hyrkäs T, et al. Chronic inflammation around painless partially erupted third molars. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003; 95(3): 277–282, doi: 10.1067/moe.2003.86, indexed in Pubmed: 12627097.
  • 13. Lin Y, Weisdorf DJ, Solovey A, et al. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000; 105(1): 71–77, doi: 10.1172/JCI8071, indexed in Pubmed: 10619863.
  • 14. Majno G. Ultrastructure of the vascular membrane. Handbook of physiology. 1965; 3: 2293–2375.
  • 15. Ning H, Lin G, Lue TF, et al. Mesenchymal stem cell marker Stro-1 is a 75 kd endothelial antigen. Biochem Biophys Res Commun. 2011; 413(2): 353–357, doi: 10.1016/j.bbrc.2011.08.104, indexed in Pubmed: 21903091.
  • 16. Perlea P, Rusu MC, Didilescu AC, et al. Phenotype heterogeneity in dental pulp stem niches. Rom J Morphol Embryol. 2016; 57(4): 1187–1193, indexed in Pubmed: 28174783.
  • 17. Petre N, Rusu MC, Pop F, et al. Telocytes of the mammary gland stroma. Folia Morphol. 2016; 75(2): 224–231, doi: 10.5603/FM.a2015.0123, indexed in Pubmed: 26711648.
  • 18. Petrovic V, Stefanovic V. Dental tissue--new source for stem cells. Scientific World J. 2009; 9: 1167–1177, doi: 10.1100/tsw.2009.125, indexed in Pubmed: 19838602.
  • 19. Popescu LM, Faussone-Pellegrini MS. Telocytes — a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to telocytes. J Cell Mol Med. 2010; 14(4): 729–740, doi: 10.1111/j.1582-4934.2010.01059.x, indexed in Pubmed: 20367664.
  • 20. Rusu MC, Hostiuc S, Dermengiu D, et al. STRO-1 positive pulmonary valve stem cells: preliminary report. Rom J Leg Med. 2015; 23(1): 1–4, doi: 10.4323/rjlm.2015.1.
  • 21. Rusu MC, Hostiuc S, Vrapciu AD, et al. Subsets of telocytes: myocardial telocytes. Ann Anat. 2017; 209: 37–44, doi: 10.1016/j.aanat.2016.09.006, indexed in Pubmed: 27777113.
  • 22. Saito MT, Silvério KG, Casati MZ, et al. Tooth-derived stem cells: Update and perspectives. World J Stem Cells. 2015; 7(2): 399–407, doi: 10.4252/wjsc.v7.i2.399, indexed in Pubmed: 25815123.
  • 23. Schatteman GC, Awad O. Hemangioblasts, angioblasts, and adult endothelial cell progenitors. Anat Rec A Discov Mol Cell Evol Biol. 2004; 276(1): 13–21, doi: 10.1002/ar.a.10131, indexed in Pubmed: 14699630.
  • 24. Seta N, Kuwana M. Human circulating monocytes as multipotential progenitors. Keio J Med. 2007; 56(2): 41–47, indexed in Pubmed: 17609587.
  • 25. Tambuwala AA, Oswal RG, Desale RS, et al. An evaluation of pathologic changes in the follicle of impacted mandibular third molars. J Int Oral Health. 2015; 7(4): 58–62, indexed in Pubmed: 25954073.
  • 26. Zhang C, Cheng Xr. [Isolation and characterization of dental follicle cells from adult human dental follicle tissues]. Zhonghua Kou Qiang Yi Xue Za Zhi. 2013; 48(2): 96–101, indexed in Pubmed: 23714062.
  • 27. Zovein AC, Hofmann JJ, Lynch M, et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell. 2008; 3(6): 625–636, doi: 10.1016/j.stem.2008.09.018, indexed in Pubmed: 19041779.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4e4d79e4-82f6-4014-bc7f-d872ed41fedd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.