PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 08 |

Tytuł artykułu

iTRAQ-based quantitative proteomic analysis of cotton (Gossypium hirsutum L.) leaves reveals pathways associated throughout the aging process

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Leaf senescence is associated with changes in proteomics. In this study, to quantitatively analyze changes in protein abundance related to leaf senescence in cotton (Gossypium hirsutum L.), we employed a proteomic approach utilizing iTRAQ and physiological assays throughout the senescence of leaf tissue in cotton grown under typical field conditions. Physiological tests showed leaf chlorophyll content and photosynthetic rates decreased significantly throughout the aging process. A total of 195 differentially abundant proteins (DAPs) throughout leaf senescence were identified by mass spectrometry. Of these, 91 (47%) proteins were upregulated, while the remaining 104 (53%) were downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that the expression of genes in several pathways potentially associated with aging changed throughout senescence, including metabolic pathways, photosynthesis, pyruvate metabolism, nitrogen metabolism, and diterpenoid biosynthesis. Our findings provide a deeper understanding of aging in plants as well as fundamental data describing leaf senescence in cotton.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

08

Opis fizyczny

Article 144 [9p.], fig.,ref.

Twórcy

autor
  • Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei Province, China
autor
  • Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei Province, China
autor
  • Institute of Cotton Research of CAAS, Anyang, Henan Province, China
autor
  • Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei Province, China
autor
  • Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei Province, China
autor
  • Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei Province, China
autor
  • Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei Province, China
autor
  • Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei Province, China

Bibliografia

  • Allu AD, Soja AM, Wu A, Szymanski J, Balazadeh S (2014) Salt stress and senescence: identification of cross-talk regulatory components. J Exp Bot 65(14):3993. https://doi.org/10.1093/jxb/eru173
  • Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, Wissel K et al (2004) A transcriptional timetable of autumn senescene. Genome Biol 5(4):1–13. https://doi.org/10.1186/gb-2004-5-4-r24
  • Balazadeh S, Siddiqui H, Allu AD, Matallanaramirez LP, Caldana C, Mehrnia M et al (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62(2):250–264. https://doi.org/10.1111/j.1365-313X.2010.04151.x
  • Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Björkbacka H, Birve SJ et al (2003) Gene expression in autumn leaves. Plant Physiol 131(2):430–442. https://doi.org/10.1104/pp.012732
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Breeze E, Harrison E, Mchattie S, Hughes L, Hickman R, Hill C et al (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23(3):873–894. https://doi.org/10.1105/tpc.111.083345
  • Chipuk JE, Mcstay GP, Bharti A, Kuwana T, Clarke CJ, Siskind LJ et al (2012) Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148(5):988–1000. https://doi.org/10.1016/j.cell.2012.01.038
  • Chu P, Chen H, Zhou Y, Li Y, Ding Y, Jiang L et al (2012) Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor. Planta 235(6):1271–1288. https://doi.org/10.1007/s00425-011-1573-y
  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676. https://doi.org/10.1093/bioinformatics/bti610
  • Dong H, Li W, Tang W, Li Z, Zhang D, Niu Y (2006) Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Field Crops Res 98(2–3):106–115. https://doi.org/10.1016/j.fcr.2005.12.008
  • Evans JR, Von CS (2011) Enhancing photosynthesis. Plant Physiol 155(1):19. https://doi.org/10.1104/pp.110.900402
  • Gepstein S (2004) Leaf senescence-not just a ‘wear and tear’ phenomenon. Genome Biol 5(3):212. https://doi.org/10.1186/gb-2004-5-3-212
  • Guo Y, Dou L, Evans O, Pang C, Wei H, Song M et al (2017) Identification of GT factors in response to stresses and leaf senescence in Gossypium hirsutum L. J Plant Growth Regul 36(1):22–42. https://doi.org/10.1007/s00344-016-9619-9
  • He Y, Tang W, Swain JD, Green AL, Jack TP, Gan S (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126(2):707–716. https://doi.org/10.1104/pp.126.2.707
  • Hu F, Huang JL, Qin F, Yue CL, Wang GX (2011) Progress in chloroplast thylakoid membrane and membrane proteins. Chinese bulletin of life sciences 23(3):291–298
  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27
  • Kong X, Luo Z, Dong H, Eneji AE, Li W, Lu H (2013) Gene expression profiles deciphering leaf senescence variation between early- and late-senescence cotton lines. PLoS One 8(7):e69847. https://doi.org/10.1371/journal.pone.0069847
  • Liao JL, Huang YJ (2011) Evaluation of protocols used in 2-D electrophoresis for proteome analysis of young rice caryopsis. Genomics Proteomics Bioinform 09(6):229–237. https://doi.org/10.1016/S1672-0229(11)60026-0
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148(1):350–382. https://doi.org/10.1016/0076-6879(87)48036-1
  • Lim PO, Kim HJ, Gil Nam H (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136. https://doi.org/10.1146/annurev.arplant.57.032905.105316
  • Liu ZX, Yu C, Wang ZW, Xie YH, Sang XC, Yang ZL et al (2016a) Phenotypic characterization and fine mapping of mps1, a premature leaf senescence mutant in rice (Oryza sativa L.). J Integr Agric 15(9):1944–1954. https://doi.org/10.1016/s2095-3119(15)61279-5
  • Liu R, Wang Y, Qin G, Tian S (2016b) iTRAQ-based quantitative proteomic analysis reveals the role of the tonoplast in fruit senescence. J Proteomics 146:80–89. https://doi.org/10.1016/j.jprot.2016.06.031
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
  • Makino A (2011) Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol 155(1):125. https://doi.org/10.1104/pp.110.165076
  • Pu C, Gui XY, Yang Q, Li NZ, Cheng Z, Feng QZ et al (2015) iTRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. J Proteomics 113:244–259. https://doi.org/10.1016/j.jprot.2014.10.005
  • Qin J, Zhang J, Liu D, Yin C, Wang F, Chen P et al (2016) iTRAQ-based analysis of developmental dynamics in the soybean leaf proteome reveals pathways associated with leaf photosynthetic rate. Mol Genet Genomics Mgg 291(4):1595. https://doi.org/10.1007/s00438-016-1202-3
  • Quirino Betania F, Noh YooSun, Himelblau Edward et al (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5(7):278–282. https://doi.org/10.1016/S1360-1385(00)01655-1
  • Shah ST, Pang C, Fan S, Song M, Arain S, Yu S (2013) Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses. Gene 531(2):220–234. https://doi.org/10.1016/j.gene.2013.09.007
  • Sun JJ, Liu YJ, Qin Q, Sui SZ, Li MY (2015) Cloning and transcriptional expression analysis of α-Galactosidase gen from Chimonanthus praecox. J Southwest Univ Nat Sci Ed 37(1):25–32. https://doi.org/10.13718/j.cnki.xdzk.2015.01.004
  • Van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge U-I, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141(2):776–792. https://doi.org/10.1104/pp.106.079293
  • Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor M-I et al (2012) JUNGBRUNNEN1, a reactive oxygen species—responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24(2):482–506. https://doi.org/10.1105/tpc.111.090894
  • Yang Y, Ma L, Zeng H, Chen LY, Zheng Y, Li CX et al (2018) iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress. Gene 675(30):301–311. https://doi.org/10.1016/j.gene.2018.07.008
  • Yin LP, Chai XQ (1997) Changes of gIutamine synthesis and proteolyase in different wheat speicies during the leaves nature senescence (in Chinese with english abstract). J Shanxi Teach Univ Nat Sci Ed 1:46–49
  • Yu JL, Zhu ZK, Zhang ZH, Shu JB, Yang C, Song HX et al (2014) Influence of glutamine synthase and glutamate synthase on N reutilization in Brassica Napus under different nitrogen condition (in Chinese with english abstract). Crops 6:81–85
  • Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ et al (2006) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62(3):325. https://doi.org/10.1007/s11103-006-9024-z
  • Zhang A, Lu Q, Yin Y, Ding S, Wen X, Lu C (2010) Comparative proteomic analysis provides new insights into the regulation of carbon metabolism during leaf senescence of rice grown under field conditions. J Plant Physiol 167(16):1380–1389. https://doi.org/10.1016/j.jplph.2010.05.011
  • Zhang X, Liu Q, Zhou W, Li P, Alolga RN, Qian Z et al (2018) A comparative proteomic characterization and nutritional assessment of naturally- and artificially-cultivated Cordyceps sinensis. J Proteomics 181(2018):24–35. https://doi.org/10.1016/j.jprot.2018.03.029
  • Zhou Q, Zhao CP, Cao CX, Jiang QJ, Jiang HD (2010) Effects of N dressing ratio on carbon and nitrogen transport and on grain yield of Lolium multiflorum. Acta Prataculturae Sinica 19(4):47–53

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4e34525c-6927-4dff-a513-cd96f8d666d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.