PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 159 | 12 |

Tytuł artykułu

Sygnał klimatyczny w seriach przyrostów rocznych świerków z regla dolnego oraz górnego w Tatrach

Treść / Zawartość

Warianty tytułu

EN
Climatic signal in the tree-ring series of Norway spruces from the lower and upper montane forest belt in the Tatra Mountains

Języki publikacji

PL

Abstrakty

EN
The study analysed short−term rhythm of radial increments of spruces from different elevations and their climate drivers. Two Norway spruce stands were chosen at the lower and upper montane forest belt in Roztoka Valley (DR) (1000−1050 m asl, 49°13′N, 20°04′E) and in Hala Gąsienicowa (HG) (1500−1550 m asl, 49°13′N, 20°04′E). 20 trees were sampled and one increment core was taken per tree. The sampled trees were dominant or co−dominant individuals without visible damage. To remove the age trend, the tree−ring widths values were standardized to annual sensitivity indices. Principal components analysis, bootstrapped correlation and pointer years analysis were used to classify sensitivity of investigated series and identify the climate factors, which determined annual variability of the radial increments. Pointer years were also determined by using interval trend method. The first principal component (PC1) accounts for 39% of the variance among all tree−ring series. The second component (PC2) accounts for 15% of the variance among the tree−ring series and divides the series into two groups. This grouping seems to express the lower and higher locations of the sites. The sensitivity series of spruces from both sites had different as well as similar features. These differences resulted from different tree's reaction to temperature in early spring and precipitation in spring and summer. The similarity of increment reactions of spruce from both sites was caused by their similar sensitivity to sunshine duration and precipitation in January, temperature in June and July, sunshine duration in June. Cluster analysis confirmed the impact of the climatic factors on differences of increment reactions of spruces. A number of the pointer years was higher at site located in the upper montane forest belt. Their chronology also consisted a stronger climatic signal. The climatic sensitivity which was specificity for a given climatic belt was recorded into individual tree series. For that reason, the tree−ring width series of trees are useful in the estimate of a climate−increment relationship. They can also be used to dividing dendroclimatic belts.

Wydawca

-

Czasopismo

Rocznik

Tom

159

Numer

12

Opis fizyczny

s.1008-1017,rys.,wykr.,bibliogr.

Twórcy

  • Zakład Ochrony Lasu, Entomologii i Klimatologii Leśnej, Uniwersytet Rolniczy w Krakowie, al.29 Listopada 46, 31-425 Kraków
autor
  • Zakład Ochrony Lasu, Entomologii i Klimatologii Leśnej, Uniwersytet Rolniczy w Krakowie, al.29 Listopada 46, 31-425 Kraków

Bibliografia

  • Biondi F., Waikul K. 2004. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computational Geosciences 30: 303-311.
  • Bourdeau P. F. 1959. Seasonal variations of the photosynthetic efficiency of evergreen conifers. Ecology 40: 63-67.
  • Breshears D. D., McDowell N. G., Goddard K. L., Dayem K. E., Martens S. N., Meyer C. W., Brown K. M. 2008. Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology 89: 41-47.
  • Burgess S. S. O., Dawson T. E. 2004. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant Cell Environment 27: 1023-1034.
  • Cai Q., Liu Y. 2013. Climatic response of three tree species growing at different elevations in the Lüliang Mountains of Northern China. Dendrochronologia 31: 311-317.
  • Carrer M., Urbinati C. 2004. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85 (3): 730-740.
  • Carrer M., Urbinati C. 2006. Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytologist 170: 861-872.
  • Czajka B. 2012. Wpływ wysokości nad poziomem morza na wrażliwość klimatyczną świerka pospolitego w masywie Babiej Góry. SiM CEPL w Rogowie 2 (30): 91-97.
  • Deslauriers A., Rossi S., Anfodillo T., Saracino A. 2008. Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology 28: 863-871.
  • Dittmar C., Elling W. 1999. Jahrringbreite von Fichte und Buche in Abhängigkeit von Witterung und Höhe. Forstwissenschaftliches Centralblatt 118: 251-270.
  • Douglass A. E. 1920. Evidence of climate effects in the annual rings of trees. Ecology 1: 24-32.
  • Ermich K. 1963. The inception and the end of the annual tree-ring formation in Fagus silvatica L., Abies alba Mill., and Picea excelsa L. in Tatra Mountains. Ekologia Polska A 11 (13): 311-336.
  • Feliksik E., Wilczyński S. 2000. Dendroclimatological analysis of the Norway spruce (Picea abies (L.) Karst.) from the Beskid Śląski Mountains. Beskydy 13: 161-170.
  • Feliksik E., Wilczyński S. 2002. Variability of tree-ring sizes of the Norway spruce (Picea abies (L.) Karst) growing at different altitudes. Folia Forestalia Polonica A – Forestry 44: 87-96.
  • Feliksik E., Wilczyński S. 2003. Termiczne uwarunkowania przyrostu tkanki drzewnej świerka pospolitego (Picea abies (L.) Karst.) w reglu dolnym Beskidu Żywieckiego. Acta Agraria et Silvestria Series Silvestris 41: 15-24.
  • Frank D., Esper J. 2005. Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22: 107-121.
  • Fritts H. C. 1976. Tree Rings and Climate. Academic Press, London.
  • Gričar J., Zupančič M., Cufar K., Koch G., Schmitt U., Oven P. 2006. Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Annals of Botany 97: 943-951.
  • Gruber A., Zimmermann J., Wieser G., Oberhuber W. 2009. Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone. Annals of Forest Science 66: 503.
  • Hänninen H., Tanino K. 2011. Tree seasonality in a warming climate. Trends Plant Science 16: 412-416.
  • Holmes R. L. 1986. Quality control of crossdating and measuring a user manual for program COFECHA. W: Holmes R. L., Adams R. K., Fritts H. C. [red.]. Tree-ring chronologies of Western North America: California, Eastern Oregon and Northern Great Basin. Chronology Series 6, University of Arizona, Tucson. 41-49.
  • Katz C., Oren R., Schulze E. D., Milburn J. A. 1989. Uptake of water and solutes through twigs of Picea abies (L.) Karst. Trees 3: 33-37.
  • Kienast F., Schweingruber F. H., Bräker O. U., Schär E. 1987. Tree-ring studies on conifers along ecological gradients and the potential of single-year analysis. Canadian Journal of Forest Research 17: 683-696.
  • Levanič T., Gričar J., Gagen M., Jalkanen R., Loader N. J., McCarroll D., Oven P., Robertson I. 2009. The climatic sensitivity of Norway spruce (Picea abies (L.) Karst.) in the southeastern European Alps. Trees 23: 169-180.
  • Li J., Gou X., Cook E. R., Chen F. 2006. Tree ring based drought reconstruction for the central Tien Shan are in northwest China. Geophysical Research Letters 33.
  • Liu J., Qin Ch., Kang S. 2013. Growth response of Sabina tibetica to climate factors along an elevation gradient in South Tibet. Dendrochronologia 3: 255-265.
  • Major J. E., Johnsen K. H. 2001. Shoot water relations of mature black spruce families displaying a genotype×environment interaction in growth rate. III. Diurnal patterns as influenced by vapour pressure deficit and internal water status. Tree Physiology 21: 579-587.
  • Meyer F. D. 1998-1999. Pointer years analysis in dendroecology: a comparison of methods. Dendrochronologia 16-17: 193-204.
  • Pichler P. Oberhuber W. 2007. Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. Forest Ecology and Management 242: 688-699.
  • Pisek A., Winkler E. 1958. Assimilationsvermögen und Kohlenstoffhaushalt in der Krone von Fichten (Picea excelsa Link.) und Rotbuchenbaumen (Fagus sylvatica L.). Planta 51: 518-543.
  • Rolland C., Desplanque C., Michalet R., Schweingruber F. H. 2000. Extreme tree rings in Spruce (Picea abies (L.) Karst.) and Fir (Abies alba Mill.) stands in relation to climate, site, and space in the southern French and Italian Alps. Arctic, Antarctic, and Alpine Research 32 (1): 1-13.
  • Rossi S., Deslauriers A., Anfodillo T., Carraro V. 2007. Evidence of threshold temperatures for xylogenesis in conifers at highaltitudes. Oecologia 152: 1-12.
  • Rossi S., Morin H., Deslauriers A., Plourde P. Y. 2011. Predicting xylem phenology in black spruce under climate warming. Global Change Biology 17: 614-625.
  • Savva Y., Oleksyn J., Reich P., Tjoelker M., Vaganov E., Modrzynski J. 2006. Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees 20: 735-746.
  • Schweingruber F. H., Eckstein D., Serre-Bachet F., Bräker O. U. 1990. Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8: 9-38.
  • Steppe K., De Pauw D. J. W., Lemeur R., Vanrolleghem P. A. 2006. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiology 26: 257-273.
  • Szaniawski R., Żelawski W., Wierzbicki B. 1977. Wymiana gazowa i gospodarka wodna. W: Białobok S. [red.]. Nasze drzewa leśne. Świerk pospolity. PWN, Warszawa – Poznań. 131-152.
  • Wang T., Ren H., Ma K. 2005. Climatic signals in tree ring of Picea schrenkiana along an altitudinal gradient in the central Tianshan Mountains, northwestern China. Trees 19: 735-741.
  • Wang X., Zhang Y., McRae D. J. 2009. Spatial and age-dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China. Trees 23: 875-885.
  • Wigley T. M. L., Briffa K. R., Jones P. D. 1984. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. Journal of Applied Meteorology and Climatology 23: 201-213.
  • Wilczyński S. 2010. Uwarunkowania przyrostu radialnego wybranych gatunków drzew z Wyżyny Kieleckiej w świetle analiz dendroklimatologicznych. Zeszyty Naukowe UR w Krakowie 464 (341).
  • Wilczyński S., Feliksik E. Wertz B. 2004. Diversification of climatic requirements of Norway spruce (Picea abies (L.) Karst.) in the upper forest zone. EJPAU, Forestry 7 (1).
  • Wilczyński S., Szymański N. 2014a. Pionowe strefy oraz piętra dendroklimatyczne w Beskidach Zachodnich. Sylwan 158 (6): 463-472.
  • Wilczyński S., Szymański N. 2014b. Lata wskaźnikowe świerka pospolitego w Beskidach Zachodnich. Sylwan 158 (12): 883-892.
  • Wilczyński S., Szymański N. 2015. Klimatyczne przyczyny krótkookresowych reakcji przyrostowych jodły pospolitej z pogórza oraz regla dolnego. Sylwan 159 (5): 361-371.
  • Wilson R. J. S., Hopfmüller M. 2001. Dendrochronological investigations of Norway spruce along an elevational transect in the Bavarian Forest, Germany. Dendrochronologia 19: 67-79.
  • Yu G., Liu Y., Wang X. 2008. Age-dependent tree-ring growth responses to climate in Qilian juniper (Sabina przewalskii Kom.). Trees 22: 197-204.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4c81db7b-8e96-4b33-8fd1-6ba5fe201e33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.