PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 18 | 2 |

Tytuł artykułu

Testing the coexistence of Artibeus lituratus and A. planirostris in a Neotropical savanna

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Dissimilarity of relevant ecomorphological traits between species is expected to promote coexistence within a community. In this study, we tested hypotheses concerning differences in occurrence, in periods of activity and reproduction, in morphology and diet between two sympatric and phylogenetically related bat species (Artibeus lituratus and A. planirostris) in the Cerrado region of Central Brazil. No differences were found in the occurrence, activity patterns, or breeding season between species. In contrast, the species presented dissimilar morphological traits and diets (28% of overlap in diet). Our analysis suggests that A. lituratus and A. planirostris do not compete strongly with each other. This lack of competition between species facilitates coexistence on a local scale in the studied Neotropical savanna.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

2

Opis fizyczny

p.441-449,fig.,ref.

Twórcy

autor
  • Laboratorio de Biologia e Conservacao de Morcegos, Departamento de Zoologia, Universidade de Brasilia, Campus
autor
  • Laboratorio de Biologia e Conservacao de Morcegos, Departamento de Zoologia, Universidade de Brasília, Campus
  • Laboratorio de Biologia e Conservacao de Morcegos, Departamento de Zoologia, Universidade de Brasilia, Campus

Bibliografia

  • 1. Aguiar, L. M. S., and J. S. Marinho-Filho. 2004. Activity patterns of nine phyllostomid bat species in a fragment of the Atlantic Forest in southeastern Brazil. Revista Brasileira de Zoologia, 21: 385–390. Google Scholar
  • 2. Aguiar, L. M. S., and J. S. Marinho-Filho. 2007. Bat frugivory in a remnant of Southeastern Brazilian Atlantic Forest. Acta Chiropterologica, 9: 251–260. Google Scholar
  • 3. Aguiar, L. M. S., E. Bernard, V. Ribeiro, R. B. Machado, and G. Jones. 2016. Should I stay or should I go? Climate change effects on the future of Neotropical savannah bats. Global Ecology and Conservation, 5: 22–33. Google Scholar
  • 4. Aguirre, L. F., A. Herrel, R. Van Damme, and E. Matthysen. 2002. Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community. Proceedings of the Royal Society, 269B: 1271–1278. Google Scholar
  • 5. Amarasekare, P. 2003. Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters, 6: 1109–1122. Google Scholar
  • 6. Andreas, M., A. Reiter, E. Cepáková, and M. Uhrin. 2013. Body size as an important factor determining trophic niche partitioning in three syntopic rhinolophid bat species. Biologia, 68: 170–175. Google Scholar
  • 7. Batalha, M. A., and M. R. Martins. 2004. Reproductive phenology of the Cerrado plant community in Emas National Park (Central Brazil). Australian Journal of Botany, 2: 149–161. Google Scholar
  • 8. Batalha, M. A., S. Aragaki, and W. Mantovani, W. 1997. Variaçóes fenológicas das espécies do Cerrado em Emas (Pi rassununga, SP). Acta Botanica Brasilica, 11: 61–78. Google Scholar
  • 9. Beattie, A. J. 1971. A technique for the study of insect-borne pollen. Pan-Pacific Entomologist, 47: 82. Google Scholar
  • 10. Bloch, C. P., D. Stevens, and M. R. Willig. 2010. Body size and resource competition in New World bats: a test of spatial scaling laws. Ecography, 33: 1–9. Google Scholar
  • 11. Bonaccorso, F. J., J. R. Winkelmann, D. Shin, C. I. Agrawal, N. Aslami, C. Bonney, A. Hsu, P. E. Jekielek, A. K. Knox, and S. J. Kopach. 2007. Evidence for exploitative competition: Comparative foraging behavior and roosting ecology of short-tailed fruit bats (Phyllostomidae). Biotropica, 39: 249–256. Google Scholar
  • 12. Bruner, A. G., R. E. Gullison, R. E. Rice, and G. A. B. Fonseca. 2001. Effectiveness of parks in protecting tropical bio diversity. Science, 291: 125–128. Google Scholar
  • 13. Campbell, P., C. J. Schneider, A. Zubaid, A. M. Adnan, and T. H. Kunz. 2007. Morphological and ecological correlates of coexistence in Malaysian fruit bats (Chiroptera: Pteropodidae). Journal of Mammalogy, 88: 105–118. Google Scholar
  • 14. Case, T. J., and R. Sidell. 1983. Pattern and chance in the structure of model and natural communities. Evolution, 37: 832–849. Google Scholar
  • 15. Castro-Arellano, I., T. E. Lacher, M. R. Willig, and T. Rangel. 2010. Assessment of assemblage-wide temporal niche segregation using null models. Methods in Ecology and Evolution, 1: 311–318. Google Scholar
  • 16. Chesson, P. 2003. Quantifying and testing coexistence mechanisms arising from recruitment fluctuations. Theoretical Population Biology, 64: 345–357. Google Scholar
  • 17. Chesson, P. 2013. Species competition and predation. Pp. 223–256, in Encyclopedia of sustainability science and technology ( R. A. Meyers, ed.). Springer, New York, 122 pp. Google Scholar
  • 18. Diamond, J., and T. J. Case. 1986. Community ecology. Harper and Row, New York, 665 pp. Google Scholar
  • 19. Dias, B. F. S. 1992. Cerrados: uma caracterização. Pp. 7–26, in Alternativas de desenvolvimento dos Cerrados: manejo e conservação dos recursos naturais renováveis ( B. F. S. Dias, ed.). FUNATURA Brasilia, Brasil, 97 pp. Google Scholar
  • 20. Dinerstein, E. 1986. Reproductive ecology of fruit bats and the seasonality of fruit production in a Costa Rican cloud forest. Biotropica, 18: 307–318. Google Scholar
  • 21. Dobson, F. S. 1992. Body mass, structural size and lifehistory patterns of the Columbian ground squirrel. The American Naturalist, 140: 109–125. Google Scholar
  • 22. Fleming, T. H. 1988. The short-tailed fruit bat: a study in plant-animal interactions. University of Chicago Press, Chicago, xvi + 380 pp. Google Scholar
  • 23. Garcia, Q., J. Rezende, and L. M. S. Aguiar. 2000. Seed dispersal by bats in a disturbed area of Southeastern Brazil. Revista de Biologia Tropical, 48: 125–128. Google Scholar
  • 24. Gardner, A. L. 2008. Mammals of South America. Volume 1: Marsupials, xenarthrans, shrews, and bats ( A. L. Gardner, ed.). University of Chicago Press, Chicago, 690 pp. Google Scholar
  • 25. Giannini, N. P., and E. K. V. Kalko. 2004. Trophic structure in a large assemblage of phyllostomid bats in Panama. Oikos, 105: 209–220. Google Scholar
  • 26. Gotelli, N. J., and G. L. Entsminger. 2004. EcoSim: null models software for ecology. Version 7. Acquired Intelli gence Inc. & Kesey-Bear. Jericho, VT 05465. Computer soft ware. Available at http://garyentsminger.com/ecosim/index.htm. Google Scholar
  • 27. Green, A. J. 2001. Mass/length residuals: measures of body condition or generators of spurious results? Ecology, 82: 1473–1483. Google Scholar
  • 28. Hollis, L. 2005. Artibeus planirostris. Mammalian Species, 775: 1–6. Google Scholar
  • 29. Hutchinson, G. E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93: 145–159. Google Scholar
  • 30. IBGE [Instituto Brasileiro de Geografia e Estatistica]. 2006. Mapa de Unidades de Relevo do Brasil. Escala 1:5,000,000. Instituto Brasileiro de Geografia e Estatistica, Rio de Janeiro, Brasil. Google Scholar
  • 31. Jacobs, D. S., and R. M. R. Barclay. 2009. Niche differentiation in two sympatric sibling bat species, Scotophilus dinganii and Scotophilus mhlanganii. Journal of Mammalogy, 90: 879–887. Google Scholar
  • 32. Kunz, T. H. 1973. Resource utilization: temporal and spatial com ponents of bat activity in central Iowa. Journal of Mammalogy, 54: 14–32. Google Scholar
  • 33. Kunz, T. H., and K. S. Orrell. 2004. Energy costs of reproduction. Encyclopedia of Energy, 5: 423–442. Google Scholar
  • 34. Larsen, P. A., M. R. Marchán-Rivadeneira, and R. J. Baker. 2013. Speciation dynamics of the fruit-eating bats (genus Artibeus): with evidence of ecological divergence in Cen tral American populations. Pp. 315–339, in Batevolution, ecology, and conservation ( R. A. Adams and S. C. Pedersen , eds.). Springer, New York, 547 pp. Google Scholar
  • 35. Lim, B. K., and M. D. Engstrom. 2001. Bat community structure at Iwokrama Forest, Guyana. Journal of Tropical Ecology, 17: 647–665. Google Scholar
  • 36. Lopez, J. E., and C. Vaughan. 2007. Food niche overlap among neotropical frugivorous bats in Costa Rica. Revista de Biologia Tropical, 55: 301–313. Google Scholar
  • 37. Macarthur, R. H., and R. Levins. 1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101: 377–387. Google Scholar
  • 38. Marciente, R., P. E. Bobrowiec, and W. E. Magnusson. 2015. Ground-vegetation clutter affects phyllostomid bat assemblage structure in lowland Amazonian forest. PLoS ONE, 10: e0129560. Google Scholar
  • 39. Marinho-Filho, J. S. 1991. The coexistence of two frugivorous bat species and the phenology of their food plants in Brazil. Journal of Tropical Ecology, 7: 59–67. Google Scholar
  • 40. Marinho-Filho, J., and I. Sazima. 1989. Activity patterns of six phyllostomid bat species in Southeastern Brazil. Revista Bra sileira de Biologia, 49: 777–782. Google Scholar
  • 41. Marques-Aguiar, S. A. 2007. Gênus Artibeus Leach, 1821. Pp. 301–321, in Mammals of South America. Volume 1: Marsupials, xenarthrans, shrews, and bats ( A. L. Gardner, ed.). University of Chicago Press, Chicago, 690 pp. Google Scholar
  • 42. Mcnab, B. K. 1970. Body weight and the energetics of temperature regulation. Journal of Experimental Biology, 53: 329–348. Google Scholar
  • 43. Mello, M. A. R., G. M. Schittini, P. Selig, and H. G. Bergallo. 2004. Seasonal variation in the diet of the bat Carollia perspicillata (Chiroptera: Phyllostomidae) in an Atlantic For est area in southeastern Brazil. Mammalia, 68: 49–55. Google Scholar
  • 44. Mello, M. A., E. K. Kalko, and W. R. Silva. 2008. Diet and abundance of the bat Sturnira lilium (Chiroptera) in a Brazilian montane Atlantic forest. Journal of Mammalogy, 89: 485–492. Google Scholar
  • 45. Moermond, T. C., and J. S. Denslow. 1985. Neotropical avian frugivores: patterns of behaviour, morphology, and nutrition with consequences for food selection. Ornithological Monographs, 36: 865–897. Google Scholar
  • 46. Okuzaki, Y., Y. Takami, and T. Sota. 2010. Resource partitioning or reproductive isolation: the ecological role of body size differences among closely related species in sympatry. Journal of Animal Ecology, 79: 383–392. Google Scholar
  • 47. Oliveira, L. Q., R. Marciente, W. E. Magnusson, and P. E. D. Bobrowiec. 2015. Activity of the insectivorous bat Pteronotus parnellii relative to insect resources and vegetation structure. Journal of Mammalogy, 96: 1–9. Google Scholar
  • 48. Oliveira, P. E. A. M. 2008. Fenologia e biologia reprodutiva das especies de Cerrado. Pp. 273–290, in Cerrado: ecologia e flora ( S. M. Sano, S. P. Almeida, and J. F. Ribeiro, eds.). Embrapa Informacao Tecnologica, Planaltina DF, Brasilia, 876 pp. Google Scholar
  • 49. Ortencio Filho, H., N. R. Reis, and C. V. Minte-Vera. 2010. Time and seasonal patterns of activity of phyllostomid in fragments of a stational semidecidual forest from the Upper Parana River, Southern Brazil. Brazilian Journal of Biology, 70: 937–945. Google Scholar
  • 50. Paine, R. T. 1966. Food web complexity and species diversity. The American Naturalist, 100: 65–75. Google Scholar
  • 51. Pereira, T. S., M. L. M. N. Costa, L. F. D. Moraes, and C. Luchiari. 2008. Fenologia de espécies arbóreas em Floresta Atlântica da Reserva Biológica de Poço das Antas, Rio de Janeiro, Brasil. Iheringia (Série Botânica), 63: 329–339. Google Scholar
  • 52. Peres, M. K. 2011. Diásporos do Cerrado atrativos para fauna: chave interativa, caracterização visual e relações ecológicas. Ph.D. Dissertation, Universidade de Brasília, Brasília, xi + 122 pp. Google Scholar
  • 53. Pianka, E. R. 1973. The structure of lizard communities. Annual Review of Ecology and Systematics, 4: 53–74. Google Scholar
  • 54. Pinheiro, E. C., V. A. Taddei, R. H. Migliorini, and I. C. Kettelhut. 2006. Effect of fasting on carbohydrate metabolism in frugivorous bats (Artibeus lituratus and Artibeus jamaicensis). Comparative Biochemistry and Physiology, 143B: 279–284. Google Scholar
  • 55. R DEVELOPMENT CORE TEAM. 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.Rproject.org. Google Scholar
  • 56. Ratter, J. A., J. F. Ribeiro, and Bridgewater, S. 1997. The Brazilian Cerrado vegetation and threats to its biodiversity. Annals of Botany, 80: 223–230. Google Scholar
  • 57. Redondo, R. A., L. P. Brina, R. F. Silva, A. D. Ditchfield, and F. R. Santos. 2008. Molecular systematics of the genus Arti beus (Chiroptera: Phyllostomidae). Molecular Phylogenetics and Evolution, 49: 44–58. Google Scholar
  • 58. Ricklefs, R. E. 2008. Disintegration of the ecological community. The American Naturalist, 172: 741–750. Google Scholar
  • 59. Ricklefs, R. E., and J. Travis. 1980. A morphological approach to the study of avian community organization. The Auk, 97: 321–338. Google Scholar
  • 60. Sanchez, M. S., N. P. Giannini, and R. M. Barquez. 2012. Bat frugivory in two subtropical rain forests of Northern Argentina: testing hypotheses of fruit selection in the Neotropics. Mammalian Biology, 77: 22–31. Google Scholar
  • 61. Siepielski, A. M., and M. A. Mcpeek. 2010. On the evidence for species coexistence: a critique of the coexistence program. Ecology, 91: 3153–3164. Google Scholar
  • 62. Silva, F. A. M., E. D. Assad, and B. A. Evangelista. 2008. Caracterização climática do bioma Cerrado. Pp. 153–212, in Cerrado: ecologia e flora ( S. M. Sano, S. P. Almeida, and J. F. Ribeiro, eds.). Embrapa Informação Tecnológica, Planaltina, DF, Brasília, 876 pp. Google Scholar
  • 63. Stouffer, D., E. Rezende, and L. Amaral. 2011 The role of body mass in diet contiguity and food-web structure. Journal of Animal Ecology, 80: 632–639. Google Scholar
  • 64. Strong, D. R., D. Simberloff, L. G. Abele, and A. B. Thistle. 1984. Ecological communities: conceptual issues and the evidence ( D. R. Strong, D. Simberloff, L. G. Abele, and A. B. Thistle, eds.). Princeton University Press, Princeton, New Jersey, 613 pp. Google Scholar
  • 65. Taddei, V. A. 1980. Biologia reprodutiva de Chiroptera: perspectivas e problemas. Interfacies, 6: 1–18. Google Scholar
  • 66. Tamsitt, J. R. 1967. Niche and species diversity in neotropical bats. Nature, 213: 784–786. Google Scholar
  • 67. Tschapka, M. 2004. Energy density patterns of nectar resources permit coexistence within a guild of Neotropical flowervisiting bats. Journal of Zoology (London), 263: 7–21. Google Scholar
  • 68. Varassin, I. G., and W. R. Silva. 1999. Padroes estacionais de frutificação e germinação de sementes em Cerrado, Minas Gerais. Boletim do Museu de Biologia Mello Leitão, 10: 13–28. Google Scholar
  • 69. Webb, C. O., D. D. Ackerly, M. A. Mcpeek, and M. J. Donoghue. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33: 475–505. Google Scholar
  • 70. Weber, M. M, J. L. S. Arruda, B. O. Azambuja, V. L. Camilotti, and N. C. Caceres. 2011. Resources partitioning in a fruit bat community of the southern Atlantic Forest, Brazil. Mammalia, 75: 217–225. Google Scholar
  • 71. Willig, M. 1985. Reproductive patterns of bats from Caatingas and Cerrado biomes in Northeast Brazil. Journal of Mammalogy, 66: 668–681. Google Scholar
  • 72. Willig, M. R., and M. P. Moulton. 1989. The role of stochastic and deterministic processes in structuring neotropical bat communities. Journal of Mammalogy, 70: 323–329. Google Scholar
  • 73. Willig, M. R., G. R. Camilo, and S. J. Noble. 1993. Dietary overlap in frugivorous and insectivorous bats from edaphic Cerrado habitats of Brazil. Journal of Mammalogy, 74: 117–128. Google Scholar
  • 74. Zortéa, M., and C. J. R. Alho. 2008. Bat diversity of a Cerrado habitat in central Brazil. Biodiversity and Conservation, 17: 791–805. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-4c3e9cdf-0296-4f17-be5d-ffe7eba13ad2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.