PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 10 |

Tytuł artykułu

Primary and secondary somatic embryogenesis in Chrysanthemum (Chrysanthemum morifolium) cv. ‘Baeksun’ and assessment of ploidy stability of somatic embryogenesis process by flow cytometry

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We developed an efficient and simple system for inducing somatic embryogenesis and regenerating plantlets from petal explant of Chrysanthemum (Chrysanthemum morifolium) cv. ‘Baeksun’. Somatic embryogenesis was induced from petal explants on the Murashige and Skoog (MS) medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 3.0 mg l−1 6-benzyladenine (BA), yielding the highest mean number of embryos (56.3) per explant after 5 weeks of culture. We evaluated the effects of basal medium and various concentrations of sucrose on the proliferation of secondary somatic embryos. MS medium was observed to be more effective in promoting the proliferation of somatic embryos than half-strength Murashige and Skoog (1/2MS). In addition, 1 % sucrose was also found to be the best in induction of secondary embryogenesis. The highest germination rate (70 %) of the somatic embryos was observed on the MS medium containing 0.2 mg l−1 α-naphthalene acetic acid and 1 g l−1 activated charcoal (AC). Shoots elongated rapidly and roots developed well on hormone-free MS medium with 1 g l−1 AC and successfully acclimated in the greenhouse. Flow cytometric analysis of the primary somatic embryos, secondary somatic embryos, and the somatic embryo-obtained plants along with the parent grown in the greenhouse showed that they all had same identical peaks, indicating that there was no variation of ploidy level during the regeneration process. We expect that our report would be useful for micropropagation and Agrobacterium-mediated genetic transformation studies of this cultivar.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

10

Opis fizyczny

p.2965-2974,fig.,ref.

Twórcy

autor
  • Department of Horticultural Science, Kyungpook National University, Daegu 702-701, Republic of Korea
autor
  • Department of Horticultural Science, Kyungpook National University, Daegu 702-701, Republic of Korea
autor
  • Department of Horticultural Science, Yeungnam University, Gyeongsan 712-749, Republic of Korea
  • Department of Ecological Environment, Kyungpook National University, Sangju 742-711, Republic of Korea
autor
  • Department of Agricultural Education, Sunchon National University, Sunchon 540-742, Republic of Korea
autor
  • National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
autor
  • Department of Horticultural Science, Kyungpook National University, Daegu 702-701, Republic of Korea
autor
  • Department of Horticultural Science, Kyungpook National University, Daegu 702-701, Republic of Korea

Bibliografia

  • Agarwal S, Kanwar K, Sharma DR (2004) Factors affecting secondary somatic embryogenesis and embryo maturation in Morus alba L. Sci Hortic 102:359–368
  • Bao Y, Liu G, Shi X, Xing W, Ning G, Liu J, Bao M (2012) Primary and repetitive secondary somatic embryogenesis in Rosa hybrid ‘Samantha’. Plant Cell Tiss Organ Cult 109:411–418
  • Clarindo WR, Carvalho CR, Arau0jo FS, Abreu IS, Otoni WC (2008) Recovering polyploid papaya in vitro regenerants as screened by flow cytometry. Plant Cell Tiss Organ Cult 92:207–214. doi:10.1007/s11240-007-9325-1
  • Eapen S, George L (1993) Somatic embryogenesis in peanut: influence of plant growth regulators and sugars. Plant Cell Tiss Organ Cult 35:151–156
  • Endemann M, Hristoforoglu K, Stauber T, Wilhelm E (2001) Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry. Biol Plant (Prague) 44:339–345. doi:10.1023/A:1012426306493
  • Fiuk A, Rybczyn0ski JJ (2008) Genotype and plant growth regulator dependent response of somatic embryogenesis from Gentiana spp. leaf explants In Vitro Cell. Dev Biol Plant 44:90–99. doi:10.1007/s11627-008-9124-3
  • Gesteira AS, Otoni WC, Barros EG, Moreira MA (2002) RAPDbased detection of genomic instability in soybean plants derived from somatic embryogenesis. Plant Breeding 121:269–271. doi:10.1046/j.1439-0523.2002.00708.x
  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2002) Stress induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. Plant J 34:107–111
  • Kamada H, Ishikawa K, Saga H, Harada H (1993) Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tissue Cult Lett 10:38–44
  • Karami O, Deljou A, Kordestani GK (2008) Secondary somatic embryogenesis of carnation (Dianthus caryophyllus L.). Plant Cell Tiss Organ Cult 92:273–280
  • Kintzios S, Sereti E, Bluchos P, Drossopoulos JB, Kitsaki CK, Liopa-Tsakalidis A (2002) Growth regulator pretreatment improves somatic embryogenesis from leaves of squash (Cucurbita pepo l.) and melon (Cucumis melo l.). Plant Cell Rep 21:1–8
  • Kudo N, Kimura Y (2001) Patterns of endopolyploidy during seedling development in cabbage (Brassica oleracea L). Ann Bot (Lond) 87:275–281
  • Lopez-Perez AJ, Carreno J, Martinez-Cutillas A, Dabauza M (2005) High embryogenic ability and plant regeneration of table grapevine cultivars (Vitis vinifera L.) induced by activated charcoal. Vitis 44:79–85
  • Mandal AKA, Datta SK (2005) Direct somatic embryogenesis and plant regeneration from ray florets of chrysanthemum. Biol Plantarum 49:29–33
  • Martinelli L, Bragagna P, Poletti V, Scienza A (1993) Somatic embryogenesis from leaf and petiole derived callus of Vitis rupestris. Plant Cell Rep 12:207–210
  • May RA, Sink KC (1995) Genotype and auxin influence direct somatic embryogenesis from protoplasts derived from embryogenic cell suspension of Asparagus officinalis. Plant Sci 108:71–84. doi:10.1016/0168-9452(95)04117-D
  • May RA, Trigiano RN (1991) Somatic embryogenesis and plant regeneration from leaves of Dendranthema grandiflora. J Am Soc Hort Sci 116:366–371
  • Mckently AH (1991) Direct somatic embryogenesis from axes of mature peanut embryos. In Vitro Cell Dev Biol Plant 27:197–200
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497
  • Naing AH, Chung JD, Park IS, Lim KB (2011) Efficient plant regeneration of the endangered medicinal orchid, Coelogyne cristata using protocorm-like bodies. Acta Physiol Plant 33:659–666
  • Naing AH, Kim CK, Yun BJ, Jin JY, Lim KB (2013) Primary and secondary somatic embryogenesis in Chrysanthemum cv. Euro. Plant Cell Tiss Organ Cult 112:361–368
  • Orbovié V, Calovié M, Viloria Z, Nielsen B, Gmitter FG Jr, Castle WS, Grosser JW (2008) Analysis of genetic variability in various tissue culture-derived lemon plant populations using RAPD and flow cytometry. Euphytica 161:329–335
  • Pareek A, Kothari SL (2003) Direct somatic embryogenesis and plant regeneration from leaf culture of ornamental species of Dianthus. Sci Hortic 98:449–459
  • Pavingerova D, Dostal J, Biskova R, Benetka V (1994) Somatic embryogenesis and agrobacterium mediated transformation of chrysanthemum. Plant Sci 97:95–101
  • Pinto DLP, de Barros BA, Viccini LF, de Campos JMS, da Silva ML, Otoni WC (2010) Ploidy stability of somatic embryogenesisderived Passiflora cincinnata Mast. plants as assessed by flow cytometry. Plant Cell Tiss Organ Cult 103:71–79
  • Rakoczy-Trojanowska M (2002) The effects of growth regulators on somaclonal variation in rye (Secale cereale L.) and selection of somaclonal variants with increased agronomic traits. Cell Mol Biol Lett 7:1111–1120
  • Robert DR (1991) Abscisic asid and mannitol promote early development; maturation and storage protein accumulation in somatic embryogenesis of interior spruce. Plant Physiol 83:247–252
  • Rout GR, Das P (1997) Recent trends in the biotechnology of Chrysanthemum: a critical review. Sci Hortic 69:239–257
  • Rout GR, Debata BK, Das P (1991) Somatic embryogenesis in callus cultures of Rosa hybrida L. cv. Landora. Plant Cell Tiss Organ Cult 27:65–69
  • Shi XP, Dai XG, Liu GF, Zhang JW, Ning GG, Bao MZ (2009) Cyclic secondary somatic embryogenesis and efficient plant regeneration in camphor tree (Cinnamomum camphora L.). In Vitro Cell Dev Biol Plant 46:117–125
  • Shinoyama H, Nomura Y, Tsuchiya T, Kazuma T (2004) A simple and efficient method for somatic embryogenesis and plant regeneration from leaves of chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura). Plant Biotechnol 21:25–30
  • Tanaka K, Kanno Y, Kudo S, Suzuki M (2000) Somatic embryogenesis and plant regeneration in chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura). Plant Cell Rep 19:946–953
  • Trolinder Norma L, Goodin JR (1988) Somatic embryogenesis in cotton (Gossypium) 2. Requirements for embryo development and plant regeneration. Plant Cell Tiss Organ Cult 12:43–53
  • Vasic D, Alibert G, Skoric D (2002) Protocols for efficient and repetitive secondary somatic embryogenesis in Helliantus Maximiliani (Schrader). Plant Cell Rep 2:121–125
  • Xiao W, Huang XL, Huang X, Chen YP, Dai XM, Zhao JT (2007) Plant regeneration from protoplasts of Musa acuminata cv. Mas (AA) via somatic embryogenesis. Plant Cell Tiss Organ Cult 90:191–200
  • Xu P, Zhang Z, Xia X, Jia J (2012) Somatic embryogenesis and plant regeneration in chrysanthemum (Yuukou). Plant Cell Tiss Organ Cult 111:393–397

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4c1f3ff3-8a4b-485a-babf-85029f5f8bf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.