PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 2 |

Tytuł artykułu

Modulation of Arabidopsis CYCB1 expression patterns by polyamines and salt stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Polyamines are new plant growth regulators that participate in various physiological processes modulating cell division and differentiation, stimulating secondary metabolite production and in stress responsiveness. In the present study, we evaluated the effect of polyamine application on CYCB1-GUS reporter line in Arabidopsis, in order to monitor changes in cell division. We observed that polyamines modulate the expression of CYCB1-GUS, most likely in an amine- pecific manner. In particular, spermidine and spermine induced significant increases in CYCB1-GUS expression in shoot apex and root meristems. According of this view, mainly the higher polyamines stimulate the lateral root formation in Arabidopsis. Furthermore, the application of D-arginine and methylglyoxal bis-(guanylhydrazone) polyamine inhibitors drastically reduced Arabidopsis CYCB1-GUS root growth and plant fresh weight, as well as CYCB1-GUS expression. Another key point on this study was to analyze the effect of polyamines on CYCB1-GUS expression under salt stress. Salt stress treatments repressed CYCB1-GUS expression in a concentration dependent manner; this negative effect was ameliorated by polyamine application, in particular by spermidine and spermine, even at 125 mM NaCl, allowing the maintenance of CYCB1-GUS levels under salt stress. This work is one more contribution on the role of polyamines in cell cycle modulation and abiotic stress protection.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

2

Opis fizyczny

p.461-469,fig.,ref.

Twórcy

  • Laboratorio de Estudios Moleculares de Respuesta a Estress en Plantas, Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica AC, Camino a la Presa de San Jose 2055, C.P. 78216, AP 3-74 San Luis Potosi, Tangamanga, Mexico
  • Facultad de Cincias, Universidad Autonoma de San Luis Potosi, Av. Salvador Nava s/n, Zona Universitaria, CP 78290 San Luis Potosi, Mexico
  • Laboratorio de Estudios Moleculares de Respuesta a Estress en Plantas, Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica AC, Camino a la Presa de San Jose 2055, C.P. 78216, AP 3-74 San Luis Potosi, Tangamanga, Mexico
  • Laboratorio de Estudios Moleculares de Respuesta a Estress en Plantas, Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica AC, Camino a la Presa de San Jose 2055, C.P. 78216, AP 3-74 San Luis Potosi, Tangamanga, Mexico

Bibliografia

  • Alcázar R, Cuevas JC, Patron M, Altabella T, Tiburcio AF (2006) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant 128:448–455
  • Baron K, Stasolla C (2008) The role of polyamines during in vivo and in vitro development. In vitro cell. Dev Biol Plant 44:384–395
  • Basu R, Maitra N, Gosh B (1988) Salinity results in polyamine accumulation in early rice (Oriza sativa L.) seedlings. Aust J Plant Physiol 16:777–786
  • Brüggemann LI, Pottosin II, Schönknech G (1998) Cytoplasmic polyamines block the fast-activating vacuolar cation channel. Plant J 16:10–105
  • Burssens S, Himanen K, van de Cotte B, Beeckman T, Van Montagu M, Inzé D, Verbruggen N (2000) Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta 211:632–640
  • Chattopadhayay MK, Tiwari BS, Ghattopadhyay G, Bose A, Sengupta DN, Ghosh B (2002) Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol Plant 116:192–199
  • Colón-Carmona A, You R, Haimovitch Gal T, Doerner P (1999) Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J 20:503–508
  • Couée I, Hummel I, Sulmon C, Gouesbet G, El Amrani A (2004) Involvement of polyamines in root development. Plant Cell Tissue Org Cult 76:1–10
  • De Veylder L, Beeckman T, Inze D (2007) The ins and outs of the plant cell cycle. Nat Rev Mol Cell Biol 8:655–665
  • Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264
  • Erdei L, Szegletes Z, Barabas K, Pestenacz A (1996) Responses in polyamine titer under osmotic and salt stress in sorghum and maize seedlings. J Plant Physiol 147:599–603
  • Friedman R, Altman A, Bachrach U (1982) Polyamines and root formation in mung bean hypocotyl cuttings. I. Effect of exogenous compounds and changes in endogenous polyamines. Plant Physiol 70:844–848
  • Galston AW, Altman A, Kaur-Sawhney R (1978) Polyamines, ribonuclease and the improvement of oat leaf protoplasts. Plant Sci Lett 11:69–79
  • Ge C, Cui X, Wang Y, Hu Y, Fu Z, Zhang D, Cheng Z (2006) BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res 16:446–456
  • Handa AK, Mattoo AK (2010) Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem 48:540–546
  • Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560
  • Hernández-Lucero E, Ruiz OA, Jiménez-Bremont JF (2008) Effect of salt stress on polyamine metabolism in two bean cultivars. Plant Stress 2:96–102
  • Imai A, Akiyama T, Kato T, Sato S, Tabata S, Yamamoto KT, Takahashi T (2004a) Spermine is not essential for survival of Arabidopsis. FEBS Lett 556:148–152
  • Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T (2004b) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135: 1565–1573
  • Ishida T, Adachi S, Yoshimura M, Shimizu K, Umeda M, Sugimoto K (2010) Auxin modulates the transition from the mitotic cycle to the endocycle in Arabidopsis. Development 137:63–71
  • Jang SJ, Cho HW, Park KY, Kim YB (2006) Changes in cellular polyamine contents and activities of their biosynthetic enzymes at each phase of the cell cycle in BY-2 cells. J Plant Biol 49:153–159
  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol 5:387–405
  • Jiménez-Bremont JF, Camacho-Villasana YM, Cabrera-Ponce JL, Barba de la Rosa AP, Ochoa-Alejo N (2004) Sequence comparison of plant ornithine decarboxylases reveals high homology and lack of introns. Biol Plant 48:193–198
  • Jiménez-Bremont JF, Ruiz OA, Rodríguez-Kessler M (2007) Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress. Plant Physiol Biochem 45:812–821
  • Kakkar RK, Nagar PK, Ahuja PS, Rai VK (2000) Polyamine and plant morphogenesis. Biol Plant 43:1–11
  • Kakkar RK, Sawhney VK (2002) Polyamine research in plants a changing perspective. Physiol Plant 116:281–292
  • Kasinathan V, Wingler A (2004) Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiol Plant 121:101–107
  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Over-expression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722
  • Kaur-Sawhney R, Flores HE, Galston AW (1980) Polyamine-induced DNA synthesis and mitosis in oat leaf protoplasts. Plant Physiol 65:368–371
  • Koiwa H, Li F, McCully MG, Mendoza I, Koizumi N, Manabe Y, Nakagawa Y, Zhu J, Rus A, Pardo JM, Bressan RA, Hasegawa PM (2003) The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. Plant Cell 15:2273–2284
  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381
  • Liu J-H, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotech 24:117–126
  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin and ethylene-independent signaling mechanism in Arabidopsis thaliana. MPMI 20:207–217
  • Maiale S, Sánchez DH, Guirado A, Vidal A, Ruiz OA (2004) Spermine accumulation under salt stress. J Plant Physiol 161:35–42
  • Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44
  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Reg 34:135–148
  • Mattoo AK, Minocha SC, Minocha R, Handa AK (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids 38:405–413
  • Mirza JI, Bagni N (1991) Effects of exogenous polyamines and difluoromethylornithine on seed germination and root growth of Arabidopsis thaliana. Plant Growth Reg 10:163–168
  • Mo H, Pua EC (2002) Up-regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard (Brassica juncea) in response to stress. Physiol Plant 114:439–449
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15: 473–497
  • Pandolfi C, Pottosin I, Cuin T, Mancuso S, Shabala S (2010) Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants. Plant Cell Physiol 51:422–434
  • Pang X-M, Zhang Z-Y, Wen X-P, Ban Y, Moriguchi T (2007) Polyamines, all purpose players in response to environment stresses in plants. Plant Stress 1:173–188
  • Pohjanpelto P, Nordling S, Knnutila S (1994) Flow cytometric analysis of the cell cycle in polyamine-depleted cells. Cytometry 16:331–338
  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875
  • Roy M, Wu R (2002) Overexpression of S-adenosyl methionine dearboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163: 987–992
  • Tiburcio AF, Altabella T, Borrel A, Masgrau C (1997) Polyamine metabolism and its regulation. Physiol Plant 100:664–674
  • Urano K, Hobo T, Shinozaki K (2005) Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett 579:1557–1564
  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi K, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926
  • Vandepoele K, Raes J, De Veylder L, Rouzé P, Rombauts S, Inzé D (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14:903–916
  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14
  • Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, Fowke LC (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J 15:501–510
  • West G, Inzé D, Beemster GT (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135:1050–1058
  • Wi SJ, Kim WT, Park KY (2006) Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broadspectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111–1121
  • Williams K (1997) Interactions of polyamines with ion channels. Biochem J 325:289–297
  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490
  • Yamaguchi K, Takahashia Yoshihiro, Berberichb Thomas, Imaic Akihiko, Miyazakia Atsushi, Takahashic Taku, Michaeld Anthony, Kusano Tomonobu (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788
  • Zhao F, Song C, He J, Zhu H (2007) Polyamines improve K⁺/Na⁺ homeostasis in barley seedlings by regulating root Ion channel activities. Plant Physiol 145:1061–1072
  • Zhao FG, Qin P (2004) Protective effect of exogenous polyamines on root tonoplast function against salt stress in barley seedlings. Plant Growth Regul 42:97–103

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-4ad6adae-1a53-4fe8-90ed-b180d76e05f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.